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Abstract

A traveler visiting Rio, Manila or Caracas does not need a report to learn that these cities are unequal; she can see it directly
from the taxicab window. This is because in most cities inequality is conspicuous, but also, because cities express different
forms of inequality that are evident to casual observers. Cities are highly heterogeneous and often unequal with respect to
the income of their residents, but also with respect to the cleanliness of their neighborhoods, the beauty of their
architecture, and the liveliness of their streets, among many other evaluative dimensions. Until now, however, our ability to
understand the effect of a city’s built environment on social and economic outcomes has been limited by the lack of
quantitative data on urban perception. Here, we build on the intuition that inequality is partly conspicuous to create
quantitative measure of a city’s contrasts. Using thousands of geo-tagged images, we measure the perception of safety,
class and uniqueness; in the cities of Boston and New York in the United States, and Linz and Salzburg in Austria, finding
that the range of perceptions elicited by the images of New York and Boston is larger than the range of perceptions elicited
by images from Linz and Salzburg. We interpret this as evidence that the cityscapes of Boston and New York are more
contrasting, or unequal, than those of Linz and Salzburg. Finally, we validate our measures by exploring the connection
between them and homicides, finding a significant correlation between the perceptions of safety and class and the number
of homicides in a NYC zip code, after controlling for the effects of income, population, area and age. Our results show that
online images can be used to create reproducible quantitative measures of urban perception and characterize the
inequality of different cities.
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Introduction

In ‘‘The Image of The City’’, Kevin Lynch defines the city as a

form of temporal art [1]. Much like sculptures, cities are spatial

structures, but unlike sculptures, cities are too large to be

experienced in a single try. Hence, people experience cities

through unique temporal sequences that are reversed, interrupted

and cut-across from the sequences experienced by others.

Ultimately, in a world in which people’s experiences of urban

environments is unique, this uniqueness can give rise to an

alternative form of inequality, where differences in the experiences

elicited by different neighborhoods, rather than income, becomes

an important source of interpersonal contrast.

Neighborhoods often differ in their demographics, such as the

income and ethnicity of the people that inhabits them, but also on

how safe they feel, how clean they are, how historical they look,

and how lively they are, among many other evaluative dimensions

[2]. Certainly, many of these dimensions will correlate with

measures of income, but income will not necessarily be a complete

proxy for all of them. Because of this, it is important to create

measures of cities–and their neighborhoods–that incorporate the

evaluative aspects of cities that income based measures are unable

to fully capture.

In this paper, we present a high-throughput method to quantify

people’s perception of cities, and their neighborhoods, and use it to

measure the perceptual inequality of Boston, New York, Linz and

Salzburg. The method is based on image ratings created from the

pairwise comparison of images in response to evaluative questions,

such as ‘‘Which place looks safer?’’ or ‘‘Which place looks more

upper-class?’’ The data shows that the range of perceptions elicited by

images from Boston and NYC is wider than the range of perception

elicited by the images of Linz and Salzburg. Finally, we validate our

measures of urban perception by studying the correlation between

urban perception and homicides in New York City, finding a

significant correlation between violent crime and urban perception

after controlling for income, population, area and age.

We conclude that the method presented in the paper is able to

capture information about a city’s built environment that is

relevant for the experiences of citizens, and not fully contained in

income-based measures. Moreover, we conclude that these

measures can be used to estimate the contrasts – or inequality –

of a city’s built environment with respect to these evaluative

dimensions.
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A tale of two literatures
Cities, and their neighborhoods, are complex entities that weave

together the physical components of the built environment, and

the social interactions of the citizens that inhabit them. Yet, the

study of cities does not belong to a unified stream of literature, but

largely to two parallel branches. On the one hand, we have the

literature advanced by urban planners and architects, and on the

other, we have the literature advanced by social scientists and

natural scientists.

Figure 1. Images used in the study. A–D. Locations from which images were collected for: A Boston, B New York City, C Salzburg and D Linz. We
note that for many locations, more than one image was collected (with the camera looking in different directions).
doi:10.1371/journal.pone.0068400.g001

Figure 2. Data Collection Methods. A. The website used to collect votes. Participants were presented a random pair of images and voted by
clicking on one in response to the question. B. Robustness of the urban perception metric (Q). B is the square of the Pearson correlation between two
disjoint subsets of votes of size v containing the same number of images.
doi:10.1371/journal.pone.0068400.g002
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The literature advanced by architects and urban planners puts

special emphasis on a city’s built environment. During the 20th

century, the development of this literature was punctuated by a

series of movements, which have resulted in cities combining

different architectural and planning styles [3]. Among the most

notable of these movements are: the City Beautiful or Civic Art

movement of Charles Mulford Robinson [4], which emphasizes

the aesthetic aspects of a city’s built environment – think of New

York’s Grand Central Station; The Garden City of Ebenezer

Howard [5], which proposed a mixture of low density housing

and parks – much like many modern suburbs; and the Radiant City

of Le Corbusier [3,6], which reconciled Howard’s Garden City

with high density buildings – NYC Stuyvesant village being an

excellent illustration of it.

The literature of architects and urban planners has also been

active in the creation of measurements of urban perception along a

number of different evaluative dimensions [2]. This study is

certainly inspired by these measures, which have been based

mostly on visual surveys where people rate images on a 1–10 scale

[2,6–14]. The justification of visual surveys is that urban

environments have features, such as the exterior beauty of the

architecture, or the neatness of the shrubbery, that are not traded

in the market. Hence, these cannot be inferred from market

mechanisms, such as the price system [2,14–15]. The offline and

online studies conducted in the past, however, have lacked the

throughput required to make comprehensive maps of urban

perception (Table 2s in File S2), and hence, are limited in their

ability to compare a large number of cities and neighborhoods.

Within the social sciences, the study of cities has focused mostly

on the connection between demographic and economic variables,

with the physical appearance of the built environment playing little

or no role. The literature advanced by economists, for instance,

Figure 3. Identifying places associated with different urban perceptions. A. High and low scoring images for safety B. social-class and C.
uniqueness. D. Scatter plot of Q-scores for safety and social-class with four examples illustrating images with different combinations of evaluative
criteria. E. Same as D, but for safety and uniqueness. G. Same as D, but for social-class and uniqueness.
doi:10.1371/journal.pone.0068400.g003
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has focused on the creation of mathematical models, such as those

involved in the new economic geography of Krugman, Fujita and

Venables [16–17], or on the establishment of empirical patterns,

such as the knowledge spillovers documented by Glaeser and

others [18–19].

Natural scientists, on the other hand, have a different focus than

economists, but also rely on quantitative methods that do not

incorporate the aesthetic features of the cities they study. Notable

examples here include the study of the fractal growth of cities [20–

21] and the study of allometric relations connecting population to

a number of social and infrastructural variables [22]. Natural

scientists have also been keen to develop automated data collection

methods that use big data to study the statistical properties of

citizens, such as their human mobility patterns [23–25] and social

networks [26–30].

Figure 4. Contrasts in urban perception. A. Scatter plot showing the Q-scores obtained for each image, city and question. Top and bottom
whiskers represent one standard deviation. B. Moran’s I z-scores for each city and question (all p-values,0.01, see SM). C. Spatial correlograms
showing the decay of spatial autocorrelation as a function of distance. D–F. Map of NYC showing statistically significant clusters of high -and low- Q-
scores for the perception of safety, class and uniqueness according to Getis Gi* statistic. Green shows clusters of positive perceptions (high Q-scores)
and red shows clusters of negative perceptions (low Q-scores).
doi:10.1371/journal.pone.0068400.g004
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Finally, the most direct connection between these two streams of

literature is the work of Jane Jacobs [31–33] and the Broken

Windows Theory (BWT) of Wilson and Kelling [34]. In ‘‘The

Death and Life of Great American Cities’’ [31], Jacobs emphasizes

the connections she observed between the physical environment of

neighborhoods, and the social interactions between the citizens

that inhabited them. ‘‘Death and Life’’ is well cited among

architects and urban planners. Social scientists and economists, on

the other hand, often build on Jacobs’ later works, including ‘‘The

Economy of Cities’’ [32] and ‘‘Cities and The Wealth of Nations’’

[33]. Hence, the literature bridge represented by Jacobs’ work is

largely due to her participation in both streams of literatures–and

unfortunately – does not indicate a clear dialogue between them.

The Broken Windows Theory (BWT) of Wilson and Kelling

[34], on the other hand, represents a more direct connection

between the study of urban forms and social outcomes. In brief,

the Broken Windows Theory suggests that evidence of environ-

mental disorder, such as broken windows, litter and graffiti, can

induce other kinds of disorder, like crime, and hence, policies that

focus on the amelioration of minor offences can help fight more

severe forms of criminal activity.

The BWT has also been politically influential. For instance, it

was cited as a justification for New York City’s quality-of-life

initiative [35–36], an order-maintenance strategy that strictly

enforces minor offenses, such as public drinking and turnstile

jumping, as a way to prevent more substantial forms of crime, such

as robbery.

Providing evidence to prove or disprove the BWT, however, has

not been easy. In fact, several observational and longitudinal

studies have argued in favor and against of the BWT [35–38].

Arguments against the BWT point to, among other things, the

existence of spurious correlations in which underlying environ-

mental features, such as liquor stores, can lead to both crime and

disorder [36]. Arguments in favor of the BWT include experi-

ments, like the ones performed by Keizer et al. [39]. Here the

authors showed that in controlled settings, evidence of disorderly

behavior, such as graffiti or supermarket carts left unattended in

parking garages, were associated with an increase in the

probability of people breaking other social norms, such as littering

or stealing.

In recent years, the BWT has also been linked to health. For

example, cases of gonorrhea in New Orleans have been shown to

correlate more strongly with an index of neighborhood disorder

than with an index of neighborhood poverty [40], and residents of

disadvantaged neighborhoods in Illinois, where noise, graffiti and

vandalism are more common, have been found to have worse

health outcomes than residents of advantaged neighborhoods,

even after controlling for individual level disadvantages [41].

All of these studies explore the link between people’s perception

of urban environments and social outcomes. Yet, the focus of this

literature has been mainly on the association between crime and

disorder, when this is only one of the many potential associations

between the urban environment and social outcomes that can be

of interest. In effect, urban landscapes are complex enough to

demand a number of evaluative dimensions to be characterized

[2], since beyond disorder places can look lively, modern,

inspiring, classy, abandoned, congested, colorful or beautiful,

among other things. These additional dimensions can be used to

explore connections between aspects of urban perception and

other social dimensions, such as entrepreneurship, civic engage-

ment and high-school completion, among other things. To explore

these connections, however, we need to extend our quantitative

methods of urban perception beyond measures of disorder. In this

paper, we show that it is possible to capture detailed information

about other evaluative dimensions and show that this information

can be used to characterize the inequality of cities with respect to

these dimensions. Finally, inspired by the BWT, we validate the

measures collected by comparing them with data on homicides for

NYC.

Data and Methods

Data
We collected data on urban perception by using 4,136 geo-tagged

images from four cities (# of images): New York City (1,706) and

Boston (1,236) in the United States; and Salzburg (544) and Linz

(650) in Austria, (Fig. 1A–D). Images from New York City (NYC)

and Boston were sourced digitally from Google Street View while

images from Linz and Salzburg were collected manually onsite. The

images and dataset used in the study can be downloaded from

(http://pulse.media.mit.edu/static/dataset/).

Perception data was collected using a website created for the

study (Fig. 2A). Here users were shown two images, selected

randomly from the dataset, and asked to click on one in response

to one of three questions: ‘‘Which place looks safer?’’, ‘‘Which

place looks more upper-class?’’, or ‘‘Which place looks more

unique?’’. Users additionally had the option of indicating that both

images were perceived as equal. The spatial location of images was

not revealed to participants during the study.

We selected the phrasing ‘‘Which place looks more X?’’ because

it reflected more accurately what could be evaluated from an

image. We note that similar questions have been asked in

preceding evaluative studies (17). 7,872 unique participants from

91 countries contributed a total of 208,738 votes and self-reported

age and gender (SM and table 1s in File S2).

Some limitations of the data include the constrained amount of

information that is captured in an image, since other sensory

Table 1. Means and Standard Deviations of the Q-scores obtained for each city and question.

Linz Salzburg Boston NYC Manhattan Queens Brooklyn

Mean Safety 4.85 4.76 4.94 4.47 5.13 4.46 4.23

Unique 4.84 5.04 4.77 4.46 5.21 4.26 4.31

Class 5.01 4.89 4.97 4.31 5.17 4.22 4.06

Standard
Deviation

Safety 0.80 0.88 1.48 1.41 1.25 1.35 1.44

Unique 0.93 0.90 1.22 1.18 1.17 1.06 1.16

Class 0.90 0.99 1.62 1.53 1.38 1.39 1.57

doi:10.1371/journal.pone.0068400.t001
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Table 2. Comparison between the means and standard deviations of the urban perception recorded for each city and question.

Difference in Means

T-test for equal means with unequal variances.

Safety (p-values)

Salzburg Boston New York Manhattan Queens Brooklyn

Linz 0.0482** 0.1152 0.0000*** 0.0004*** 0.0000*** 0.0000***

Salzburg 0.0015*** 0.0000*** 0.0000*** 0.0000*** 0.0000***

Boston 0.0000*** 0.0201** 0.0000*** 0.0000***

New York 0.0000*** 0.9193 0.0001***

Manhattan 0.0000*** 0.0000***

Queens 0.0028***

Unique (p-values)

Salzburg Boston New York Manhattan Queens Brooklyn

Linz 0.0001*** 0.1547 0.0000*** 0.0000*** 0.0000*** 0.0000***

Salzburg 0.0000*** 0.0000*** 0.0342** 0.0000*** 0.0000***

Boston 0.0000*** 0.0000*** 0.0000*** 0.0000***

New York 0.0000*** 0.0003*** 0.0033***

Manhattan 0.0000*** 0.0000***

Queens 0.4156

Class (p-values)

Salzburg Boston New York Manhattan Queens Brooklyn

Linz 0.0317** 0.4844 0.0000*** 0.0670* 0.0000*** 0.0000***

Salzburg 0.2129 0.0000*** 0.0019*** 0.0000*** 0.0000***

Boston 0.0000*** 0.0291** 0.0000*** 0.0000***

New York 0.0000*** 0.2114 0.0002***

Manhattan 0.0000*** 0.0000***

Queens 0.0535*

Difference in Variances

F-test

Safety (p-values)

Salzburg Boston New York Manhattan Queens Brooklyn

Linz 0.0257** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***

Salzburg 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***

Boston 0.0633** 0.0003*** 0.0216** 0.4562

New York 0.0091*** 0.2913 0.4144

Manhattan 0.1296 0.0034***

Queens 0.1210

Unique (p-values)

Salzburg Boston New York Manhattan Queens Brooklyn

Linz 0.3764 0.0000*** 0.0000*** 0.0000*** 0.0018*** 0.0000***

Salzburg 0.0000*** 0.0000*** 0.0000*** 0.0001*** 0.0000***

Boston 0.2511 0.4196 0.0003*** 0.1611

New York 0.8950 0.0037*** 0.6196

Manhattan 0.0445** 0.8383

Queens 0.0252**

Class (p-values)

Salzburg Boston New York Manhattan Queens Brooklyn

Linz 0.0279** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***

Salzburg 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***

Boston 0.0164** 0.0004*** 0.0000*** 0.3293

New York 0.0257** 0.0113** 0.2980

Manhattan 0.9122 0.0066***
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channels that can affect perception, such as sound and smell, are

absent in pictographic depictions. Also, variation in image quality

(i.e. contrast, hue, saturation, brightness, tint and clarity), as well as

the time of day, and weather conditions, can introduce additional

sources of variation in the perceptions associated with a digital

image. We therefore interpret the urban perception data collected

through this method as a proxy for the perceptions elicited by the

actual locations [2].

Finally, we note that the mapping between images and locations

is not one-to-one. In fact, for a large number of locations we

captured more than one image, by pointing the camera in two or

more directions. Hence, many locations are characterized by more

than one quantitative value –usually two. We captured more than

one image for many locations to take into account the variability of

using images that are not 360-degree representations of a place,

but a 90-degree wedge.

Measures
We scored each image using the fraction of times it got selected

over another image, corrected by the ‘‘win’’ and ‘‘loss’’ ratios of all

images with which it was compared. This correction allowed us to

adjust for the ‘‘strength of schedule’’ [42], since by chance some

images were compared with others that were more likely to be

selected favorably in pairwise comparisons. We define the win (W)

and loss (L) ratios of image i with respect to question u as:

Wi,u~
wi,u

wi,uzli,uzti,u

, Li,u~
li,u

wi,uzli,uzti,u

ð1Þ

where w is the number of times an image was selected over its

paired image, l is the number of times that an image was not

chosen over its paired image, and t is the number of times when an

image was chosen as equal to its paired image. Using this, we

define the Q-score for each image i and question u as:

Qi,u~
10

3
Wi,uz

1

nw
i

Xnw
i

j1~1

Wj1u{
1

nl
i

Xnl
i

j2~1

Lj2uz1

0
B@

1
CA ð2Þ

where niw is equal to the total number of images i was preferred

over, nil is equal to the total number of images i was not preferred

over, and where the first sum extends over j1, the images that

image i was preferred over and the second sum extends over j2,

the images that were preferred over i.

Equation (2) simply corrects an images win ratio (Wi,u) by

adding the average win ratio of the images that it was selected over

and by subtracting the loss ratio of the images that were selected

over image i. By doing this, we incorporate information about the

images that were paired together with each image. The numerical

factors of 10/3 and 1 are used to scale the score to fit the range [0–

10], and come from the theoretical minimum and maximums of

the analytic expression (2) (see SM). In sum, a score of Q = 10

represents the maximum possible score for safety, social-class or

uniqueness, whereas Q = 0 represents the minimum.

Robustness of Q
We test the inter-rater, or inter-observer reproducibility of Q, by

comparing the scores obtained using the same number of images,

but extracted from non-overlapping subsets of votes of size v. We

do this using subsets containing up to 50% of the total votes,

because it is not possible to construct non-overlapping subsets that

are larger than 50% of the original sample. As our measure for

inter-rater robustness (B), we use the average R2 of the Pearson

correlation between rankings calculated using the same set of

images, but a different set of votes. Formally, we define B as:

B(v)~

P
i

(Q1
i (v){SQ1(v)T)(Q2

i (v){SQ2(v)T)

s1s2

0
@

1
A

2

ð3Þ

where Q1(v) and Q2(v) represent two sets of Q-scores calculated

using disjoint sets of participants of size v, ,. is used to indicate

averages, and s1 and s2 are, respectively, the standard deviations

of the Q-scores in the sets Q1 and Q2. We note that B is related to

Cronbach’s aand represents an estimate of the test-retest reliability

of the method. A value of B = 100% indicates a perfectly robust

ranking, since it would mean that the exact same set of Q-scores

was obtained by using data collected from different people.

Figure 2B shows the average B obtained for subsets of different

size v (thick line) for each question. We find that the behavior of B

as a function of the sample size v is well approximated by:

B(v)~(1{exp(Bva))2 ð4Þ

where a and b are fitting parameters (R2 = 99.7% for safety,

R2 = 99.9% for social-class and R2 = 99.9% for uniqueness). We

use (4) to extrapolate the observed values (thin line Fig 2B) and

infer the values expected for the totality of our dataset, finding that

the 93,622 votes collected for the safety question (red square)

results in B = 86.3%, the 70,157 votes available for the social-class

question (blue square) results in B = 84.4%, and the 48,109 votes

collected for uniqueness (green square) results in B = 56.0%.

Finally, we test the internal consistency of the perceptions

collected by looking at their transitivity. We find that the overall

level of transitivity of our data is high (86.76% for safety, 87.00%

for social-class, and 83.34% for uniqueness).

As a rule of thumb, we find that between 22 and 32 votes per

image are needed to produce a ranking with B.75% for each of

the three questions.

One important concern that needs to be addressed here is the

possible biases in the measures that might come from the

demographic of participants that joined the online experiment.

To test for this, participants were asked to self-report age and

gender after contributing five clicks. Self-reporting was high, with

Table 2. Cont.

Difference in Means

T-test for equal means with unequal variances.

Queens66 0.0024***

Significance thresholds * p,0.1 **p,0.05 ***p,0.01.
doi:10.1371/journal.pone.0068400.t002
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97.1% of the participants providing answers for age and gender.

From these, 76.0% identified themselves as male and 21.1% as

female. The median self-reported age was 28 years. Finally,

participants were geo-located using their IP addresses and the

7,872 unique IP addresses were located in 91 countries.

We test the significance of possible biases by comparing the Q-

scores estimated using different subsets of participants. We do this

for participants’ age (above and below the median), gender (male

and female), and location (United States vs non-United States). As

controls, we show the correlations obtained for random subsets of

participants of the same size (Figures 1s, 2s and 3s in File S2). For

example, we compare the correlation of the scores obtained for

people older and younger than the median age of 28, with the

correlation obtained for two disjoint random half-samples of

participants. The same procedure was used to create controls for

the correlations observed between groups of participant with

different sex and for participants from US and non-US locations,

as proxied by participants’ IP-addresses. Overall, we find that the

correlations obtained for groups of different demographics are not

significantly lower than those obtained for the random controls,

indicating that the results of our sample are not driven by biases in

age, gender or location of the study’s participants.

Results

We begin by asking whether perceptions of safety, class and

uniqueness are perfectly collinear, or whether they have significant

orthogonal components. Figures 3A–3C show typical images

associated with high and low scores for safety, social-class and

uniqueness. Places perceived as safe are also more likely to be

perceived as upper-class (Fig. 3D R2 = 68.94%, p-value,0.0001)

and unique (Fig. 3E R2 = 35.32%, p-value,0.0001), yet, their

orthogonal components (1-R2) are relatively large. This allows us

to identify images matching particular combinations of evaluative

criteria, such as images where the perception of safety matches

that of social-class (Fig. 3D–I and 3D–III) and where social-class

and safety are inversely related (Fig. 3D–II and 3D–IV). Figure 3F

shows the analysis for the remaining combination of social-class

and uniqueness (R2 = 37.04%, p-value,0.0001). Together, these

results show that data collected through this method can be used to

identify images satisfying combinations of criteria, and therefore

can distinguish between the perceptions of safety, social-class and

uniqueness.

Next, we use Q to measure the contrast or inequality of urban

perception. We begin this by asking: how wide is the range of

perceptions elicited by the images of one city vis-a-vis another?

Figure 4A shows the distribution of scores characterizing each

image, for each city and question (values are reported in Table 1).

Here, we see that images in Boston and NYC are distributed over

a wider range of values. Yet, since we have considerably more

images for Boston and NYC, than for Linz and Salzburg, we

compare the standard deviations of these distributions (s), rather

than their range. We do this because the standard deviation of a

distribution is independent of sample size and provides a good

comparator to measure the dispersion of the Q-scores calculated

for each city. Moreover, the distribution of Q-scores for each

question is close to normal (see SM and Figure 4s in File S2).

Table 2 compares the means and standard deviations of each

city and question using, respectively, a t-test to compare the means

of distributions with different variances, and an F-test. The F-Test

allows us to assess whether the difference between the standard

deviations of two distributions is significant, after taking into

consideration their sample size [43]. We find that the standard

deviations of the distribution for Boston and NYC are consider-

ably larger than those for Linz and Salzburg, even when there are

no significant differences in the mean (for example with the means

of Linz and Boston for social-class). This suggests that Boston and

NYC are perceptually more unequal, since the average gap of the

evaluative response between images is larger in NYC and Boston

than in Linz and Salzburg. Moreover, we note that the standard

deviation measured for NYC is not statistically larger than the one

measured for Queens and Brooklyn, when it comes to the

perception of safety and class.

Next, we study the segregation of urban environments by asking

if the places associated with similar perceptions of safety, social-

class and uniqueness co-locate, and if so, to what extent. In

principle, a wider range of values is observed for Boston and NYC,

but these could be spatially intermixed rather than clustered. To

measure the spatial segregation of perceptions we use Moran’s I

statistic [44]. Values of I range from 21 to 1. A value of 21

indicates perfect anti-correlation (e.g. a checkerboard), whereas a

value of 1 indicates that similar values are perfectly clustered. The

null-hypothesis of I is complete spatial randomness and produces

values near 0. Moran’s I statistic, however, cannot be used directly

to make statistical inferences, since its significance depends on the

sample size. Hence, we normalize the Moran I scores for each city

by subtracting the city’s average and dividing it by its standard

deviation (creating a z-score). We also control for differences in

sample size by randomly down-sampling the data for Boston,

NYC and Linz to match the 544 points available for Salzburg.

This guarantees that all datasets have the same sample size and

ensure that variations are not due to differences in the number of

points considered.

Figure 4B shows the z-scores associated with Moran’s I for each

city and question (see Table 3s in File S2 for p-values). In general

we find that all cities exhibit positive spatial autocorrelation, with

Boston and New York having higher z-scores than Linz and

Salzburg. These results suggest that the American cities studied

have more segregated neighborhoods than the Austrian cities of

Linz and Salzburg. To explore this further, we measure the length

of the spatial autocorrelation using the autocorrelation function:

A(D~dd D)~
S(Q(~rr){vQw)(Q(~rrz~dd){vQw)T

s2
ð5Þ

Figure 4C shows the autocorrelation function (5) for each city

and for the three NYC boroughs of Manhattan, Queens and

Brooklyn. We note that since many locations contain more than

one image –images captured with the camera pointing in a

different direction–A(0),1, since this represents the correlation

between images captured in the same location but with a different

heading. Finally, we measure the correlation length of each of

these using:

A~me{nD~dd Dzg ð6Þ

where m, g and g are fitting parameters. g is included to capture

the negative correlations observed for large values of D~dd D
(.5 [km]). To ease interpretation, we define l as the distance D~dd D
at which A(D~dd D) = 0. To avoid measurement errors due to binning,

we take the average l calculated empirically using a series of bins

ranging from 100 [m] to 1000 [m], for every 100 [m].

NYC is found to be the city with the largest autocorrelation

length, having all l.4.75 [km]. Boston’s mean autocorrelation

length for the three questions is l.2.00 [km] whereas Linz and
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Salzburg have characteristic lengths of 1.6 [km] or less. This shows

that locations associated with similar perceptions form larger

spatial clusters in NYC (Figures 4 D–F) and Boston than in Linz

and Salzburg. Finally, we note that the NYC boroughs of

Manhattan, Brooklyn and Queens all exhibit strong autocorrela-

tion, with lengths only slightly smaller than that of NYC. This

suggests that the measures obtained for NYC also hold for smaller

spatial scales in that city, yet a detailed evaluation of the

association between the segregation of urban perception and city

size will require data on a larger number of cities.

Urban perception and violent crime
Finally, we use homicide data for NYC to look at the correlation

between the urban perception of inequality and homicides. We

note from the start that our intention is not to make a causal

statement, but simply to use this correlation to validate the value of

the information contained in our measures of urban perception.

Because of the spatial nature of the dataset, we use Getis Spatially

Filtered Regression (GSFR) [45–46], rather than an Ordinary

Least Square (OLS) regression. In spatial datasets is not

appropriate to use OLS regressions because of the existence of

spatial auto correlations. In other words, the fact that neighboring

cells are characterized by similar values violates the independence

assumption needed to perform an OLS. So, an OLS is only

justified if the residuals of the OLS regression are NOT spatially

auto-correlated. This is because the autocorrelation of the

residuals would indicate the existence of unexplained spatial

variation, and therefore, the existence of a missing variable. In

statistics, we would say that in this case the model is under-

specified.

GSFRs solve this problem by using a transformation that filters

out the spatial component of each variable x, into two estimates:

one capturing the spatial variation of the variable (Lx), and the

other capturing the local variation of this variable remaining after

the spatial variation has been removed (x*). For each location i,

and variable x, these variables are defined as:

x�i ~
xiSi

Gi(n{1)
ð7Þ

Lxi
~xi{x�i ð8Þ

where Si =Sjsij is the sum of the spatial weights used to

characterize the spatial proximity between data points (in our

case 1/distance between locations i and j), n is the number of

locations considered and

Gi~

P
j

wijxj

P
j

xj

for j?I (9)

Finally, a GSFR regression is an OLS regression where each

variable x is replaced by its spatially filtered x* and varying

component Lx. More details about this statistical technique can be

found in [45]. To illustrate what the method doe consider the

income of a zip code. This is a variable that is certainly spatially

autocorrelated, since rich zipcodes are more likely to locate next to

other rich zipcodes. Instead of incorporating income as a variable,

a GSFR will incorporate an income* variable, which would be the

income of a zip code that is not explained by the incomes of

nearby zip codes, and a Lincome variable, that would capture the

spatial variation of income across zip codes.

Table 3 shows the results of a GSFR where the dependent

variable is the logarithm of the number of homicides in a NYC zip

code recorded between 2003 and 2011. We note that the Google

Figure 5. Urban perception and violent crime. A Comparison between the location of crimes in NYC and the predictions of urban perception,
area and population (model [4]). B. Demographics (model [1]). C. All variables (model [5]).
doi:10.1371/journal.pone.0068400.g005
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Street View API does not provide information for the date and

time the images were captured. As explanatory factors we use the

average incomes of households in the zip-code, population, area,

age and four urban perception variables: the average Q-score for

safety and class (Qsafety, Qclass), and their respective standard

deviations (SQsafety, SQclass) calculated for each zip-code. Formally,

the regression takes the form:

log10(Homicidesz1)~B1~xx
�zB2

~LLxze ð10Þ

Table 3 presents 5 different specification of the statistical model.

All models include the population and area of a zip code, since

these are obvious correlates of crime. Model 1 includes also

income and age. Model 2 adds the perception of safety, while

model 3 includes the perception of class. Model 4 includes the

perception of class and safety, but no information on age or

income. Finally, model 5 includes all variables –population, area,

income, age, average perception of safety, average perception of

class, standard deviation in the perception of safety, and standard

deviation in the perception of class. We note that for the full

specification of our model (model [5]), we find no spatial

correlations among the residuals (Moran’s I z-score = 20.23, p-

value = 0.82), indicating that the model is not underspecified and

can be used for statistical inference. Hence, the results cannot be

interpreted as the result of a missing variable, such as policing or

race [45–46].

Model 5 explains nearly 80% of the variation of homicides

across zip codes. This correlation is 10% larger than what is

explained by income, age, population and area alone –from

69.88% (model [1]) to 79.36% (model [5])). The increase is

statistically significant (F = 5.3, p-value,1.861025), and indicates

that the measures of urban perception contain information on the

location of homicides that is not contained in income.

Overall, we find that in the full model (model [5]), the spatial

components (LQsafety, LQclass), and not the local intensity compo-

nents (Qsafety*, Qclass*) are statistically significant meaning that the

spatial variation of urban perception across the city, is what

correlates significantly with the location of homicides. Moreover,

we find that the local spread of perceptions within a zip-code

(SQclass*, SQsafety*) correlates with the number of homicides. These

results are consistent in the sense that spatial variations for the

perceptions of safety and class (rather than their absolute values)

correlate with violent crime, after introducing the control

variables. A visual comparison of the statistical models presented

in table 3 is presented in figure 5.

Finally, we notice that the regression coefficients of the safety

variables are negative (safer looking, less crime), whereas those of

class are positive (classier looking, more crime). As expected,

coefficients of safety and class are negative when introduced

individually (models [2] and [3]), but the one for class reverse signs

when we control for safety (models [4] and [5]). We interpret the

opposite signs of these coefficients as evidence that the orthogonal

component between class and safety (Figure 3D) carries important

information, since it indicates that violent crime occurred in places

that look relatively more upper class after controlling for their

perception of safety.

Conclusions

The way a city looks is of central importance for the daily

experience of billions of city-dwellers. Yet until now, the

availability of data about urban perception has been limited,

and so has our ability to compare cities with respect to them. In

this paper, we presented a method to measure urban perception

and found that the cities of Boston and NYC differ from the

Austrian cities of Linz and Salzburg in two important dimensions.

First, the perceptions recorded for the cities of Boston and NYC

are distributed more broadly than the perceptions elicited by the

images from the two Austrian cities of Linz and Salzburg. Second,

positive and negative perceptions cluster more strongly in the two

American cities, than in their European counterparts. This means

that the recorded gap between ‘‘good’’ and ‘‘bad’’ neighborhoods

is larger in NYC and Boston and that both positively evaluated

and negatively evaluated images cluster more in these American

cities than in their Austrian counterparts. Finally, we showed that

the inequality of perceptions helps explain the location of violent

crime in a NYC zip code, even after controlling for income,

population, area and age.

As the world gears towards building cities for hundreds of

millions of individuals, the imperative of understanding cities

becomes ever more important [3]. Therefore, there is a strong

need to create quantitative bridges that can help us link urban

perception with other social, political, economic and cultural

aspects of cities. In this paper, we present a method that can be

used to quantify urban perception and have applied it to the study

of a few cities and questions. Although the method offers an

important improvement in throughput over previous studies, its

ability to collect data is limited to web traffic and participation.

Because of this, future iterations will need to consider the use of a

combination of crowdsourcing and machine learning tools to

extend the patterns captured by the online participation data to

higher resolution and different latitudes. Moreover, future studies

might also explore the perceptual biases associated with the

measurement technique presented in this paper, as well as support

the development of techniques that can help identify the features

that determine the evaluative responses recorded. Ultimately, the

goal of this study – and those similar to it – is to contribute to our

understanding of the urban environments that we have built, with

the goal of improving them, and their ability to include their

citizens, while also informing the construction of future cities.
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Data and Biases 
 
Data Collection Process 
 Online imagery for Boston and New York City was scraped from Google by 
requesting random Street View locations within a predefined boundary (drawn by hand 
using a custom Google Maps application). For each city, we started with a list of 1,000 
randomly generated coordinate pairs and made requests to Google for the nearest Street 
View panorama within 50 meters. If no panorama was found, that location was skipped. 
If Street View imagery was returned, we manually curated results, rejecting unsuitable 
images, such as those only showing a brick wall or those having uncharacteristically poor 
image quality. Selected images had to show roughly 75% of one side of a street and 25% 
of the other, allowing elements in both the foreground and background to be clearly 
visible in the same image. Imagery from Linz and Salzburg were manually collected and 
were selected based on availability of access, time onsite and weather. 
 The collected images were included in an online site where users were asked to 
chose between two randomly selected images by answering one of the three questions: 
“Which place looks safer?” "Which place looks more social-class?" or "Which place 
looks more unique?" After an image was clicked, the choice of the user was recorded and 
logged as one vote in a database. Users also had the option to rate images as being 
perceptually equal by pressing a button placed between the two images. Users were not 
informed about the location of the images during the process. 
 
Participant Demographics 
 

One important question that needs to be addressed here is the possible 
measurement biases that might come from the demographic of online participants. To test 
for this, participants were asked to self-report age and gender after contributing five 
clicks. Self-reporting was high, with 97.1% of the participants providing answers for age 
and gender. From these, 76.0% identified themselves as male and 21.1% as female. The 
median self-reported age was 28 years. Finally, participants were geolocated using their 
IP addresses and the 7,872 unique IP addresses were located in 91 countries (Table 1s). 

We test for the significance of possible biases by comparing the Q-scores 
estimated using different subsets of participants. We do this for participant’s age (above 
and below the median), gender (male and female) and location (United States vs Non-
United States). As controls, we show the correlations obtained for random subsets of 
participants of the same size (Figures 1s, 2s, 3s). For example, we compare the 
correlation of the scores obtained for males and females, with the correlation between the 
scores obtained for two random samples of participants: one matching exactly the number 
of female participants in the dataset, and the other one matching exactly the number of 
male participants. The same procedure was used to create controls for the correlations 
observed for groups of different ages and for US and non-US locations, as proxied by 
participants IP-addresses. Overall, we find that the correlations obtained for groups of 
different demographics are not significantly lower than those obtained for the random 
controls. This indicates that the results of our sample are not driven by the biases in age, 
gender or location of the study’s participants. 
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Country   Number  of  Participants  

United States of America 8574 

Spain 1798 

United Kingdom 1064 

Canada 905 

Switzerland 492 

Poland 419 

Germany 388 

Australia 320 

France 293 

Netherlands 235 

Mexico 199 

Argentina 183 

Sweden 147 

Brazil 144 

Austria 129 

Italy 120 

Chile 106 

Denmark 103 

Portugal 99 

Belgium 95 

 
Table 1s. Top 20 countries ordered by number of participants 
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By Voter Gender 

 
Figure 1s. Scatter plot of Q-scores comparing male vs. female votes for A. safety 

(R2=52.0% and p<.0001), B. social-class (R2=53.2% and p<.0001), C. uniqueness 
(R2=25.0% and p<.0001), and scatter plots of equal sample sizes (control) for D. safety 
control (R2=28.0% and p<.0001), E. social-class control (R2=34.5% and p<.0001), and 

F. uniqueness control (R2=13.3% and p<.0001) 
By Voter Age 

 
Figure 2s. Scatter plot of Q-scores comparing ages above and below the median (28) for 

A. safety (R2=53.7% and p<.0001), B. Social-class (R2=54.8% and p<.0001), C. 
uniqueness (R2=23.2% and p<.0001), and scatter plots of equal sample sizes (control) for 

D. safety control (R2=44.8% and p<.0001), E. social-class control (R2=40.8% and 
p<.0001), and F. uniqueness control (R2=18.4% and p<.0001) 



5 

By Voter Location 

 
Figure 3s. Scatter plot of Q-scores comparing locations inside and outside the United 

States for A. safety (R2=54.4% and p<.0001), B. Social-class (R2=50.7% and p<.0001), 
C. uniqueness (R2=24.3% and p<.0001), and scatter plots with equal sample sizes 

(control) D. safety control (R2=44.8% and p<.0001), E. social-class control (R2=40.8% 
and p<.0001), and F. uniqueness control (R2=18.4% and p<.0001) 

Measure (Q-score) 
 
 To compare images across cities, we generated a relative scale that we call Q. Q-
scores are calculated based on the voting dataset provided as input, and therefore, cannot 
be compared with Q-scores obtained for different datasets. For example, if we were to 
calculate the Q-score for each location in New York City, using only images for NYC, 
our algorithm would produce a Q-score between 0 and 10 for each image, depending on 
how that image compared to others. If votes for another city, e.g. Linz, were generated 
later, there would be no way to compare the score obtained by NYC images with those of 
Linz, since there would have been no direct, or indirect, comparisons between them. 

To address this, we use data on all cities to calculate Q-scores. Additionally, we 
normalize all Q-scores using the theoretical minimum and maximum. We do this by 
starting with the initial equation for Q:  

  
  

(1)  

and plugging in the theoretical best and worst values an image can have. The maximum is 
obtained for an image that is selected over every image it is paired with, and that was 
paired with images that were always selected over their pairs: 
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(2)  

This results in a Q-score of 2. 
 The minimum possible score is obtained for an image that was never selected 
over its pairs, and that was paired with images that were never selected over their pairs. 
In this case, 

  
  

(3)  

which results in a Q-score of -1. 
 To normalize all equations by the minimum and maximum values, we plug the 
values of -1 (min q) and 2 (max q) in to the following normalization equation: 

  

  

(4)  

  

  

(5)  

 
 
which after simplification, 

  

  

(6)  

results in the equation referenced in the main text: 

  
  

(7)  

We chose 10 as the Q-score multiplier as a way for the reader to more intuitively 
understand its values. 
 
Q-Score Distribution 
 
The three figures below show the distribution of Q-scores for each question together with 
a Gaussian fit (red line). While technically speaking, according to a Liiliefors test only 
the distribution of uniqueness is strictly Gaussian, we find the distribution of safety and 
class to be close enough to a Gaussian for the standard deviation to be a good metric of 
dispersion.  
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Figure 4s. Q-score distribution 
 
Visual Survey Methods 
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Visual surveys are a group of methods used to measure preferences about a landscape by 
showing participants images and asking them to score them according to some 
dimension. For example, in a traditional visual survey, a surveyor would show several 
images to a participant and ask them to rank the images on some scale, frequently 1-10. 
Although visual surveys have been used heavily since the 1970’s, surveys are 
characterized by low numbers of participants and low throughput. The table below 
summarizes the number of locations, subjects and responses for a large number of visual 
surveys. 
 

Authors   Year   Publication   Locations   Subjects   Responses  

Wilson   1962   Livability  of  the  City:  Attitudes  &  Urban  
Development  

34        

Peterson   1967   Journal  of  Regional  Science   100   140   3,220  

Kaplan  et  al   1972   Perception  &  Psychophysics      88   4,928  

Herzog  et  al   1976   Environment  and  Behavior   86   121   10,406  

Nasar   1984   Journal  of  Cross-­‐Cultural  Psychology   24   46   1,104  

Devlin  &  Nasar   1989   Journal  of  Environmental  Psychology   40   40   1,600  

Steinitz   1990   Landscape  &  Urban  Planning   48   200     

Hammitt  &  
Patterson  

1994   Landscape  &  Urban  Planning   96   721     

Bishop   1997   Landscape  &  Urban  Planning   100   59   708  

Hunker  &  
Kienast  

1999   Landscape  Ecology   1   181   1,267  

Wherrett   1999   Landscape  &  Urban  Planning   90   165   3,300  

Ayala   2000   Landscape  &  Urban  Planning   176   150     

Cohen  et  al   2000   American  Journal  of  Public  Health   55        

Wherrett   2000   Landscape  &  Urban  Planning   90   180   3,600  

Brown   2001   Landscape  &  Urban  Planning   32   60     

Daniel  &  Meitner   2001   Journal  of  Environmental  Psychology      216   10,368  

Ross  &  Mirowsky   2001   Journal  of  Health  &  Social  Behavior      2,482   2,482  

Arriaza  et  al   2003   Landscape  &  Urban  Planning   160   226     

De  Groot   2003   Landscape  &  Urban  Planning      172     

Dramstad  et  al   2006   Landscape  &  Urban  Planning   30   91     
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Authors   Year   Publication   Locations   Subjects   Responses  

Roth   2006   Landscape  &  Urban  Planning      321   1477  

Vandenberg   2006   Landscape  &  Urban  Planning   225   500     

Rogge  et  al   2007   Landscape  &  Urban  Planning   330   130     

Barga  &  Bond   2008   American  Journal  of  Criminology   34        

Table 2s. A table of visual surveys including the number of locations, subjects and 
responses. 

 

Spatial Autocorrelation 
  

Spatial autocorrelation measures the similarity of values as a function of their 
distance. In other words, datasets are spatially autocorrelated if values that are spatially 
close to each other, have similar qualities and/or attributes. 
 A popular measure of spatial autocorrelation is Moran’s I index, which is defined 
as  
 

  

 
(1)  

 
where N is the number of spatial elements indexed by i and j; X is the studied attribute; 

is the mean of X; and is an element of a spatial weights matrix. 
 Since Moran’s I is an inferential statistic, values are always interpreted within the 
context of its null hypothesis. For Moran’s I, the null hypothesis is complete spatial 
randomness. Put another way, Moran’s I values measure how likely it is for an 
underlying spatial pattern to be the result of random chance. Moran’s I values range from 
-1 to 1, with negative and positive spatial autocorrelation meaning, respectively, a 
checkerboard or a totally segregated pattern. Moran’s I values near zero indicate that the 
pattern observed is random. 
 To understand spatial autocorrelation more intuitively, picture a lattice, where 
each square has both a location (x,y) and a value (white or black). If the color of a square 
were the attribute of interest, a standard checkerboard would produce a Moran’s I value 
of -1, indicating perfect anti-correlation of colors (neighbors tend to be opposite). If for 
instance, all the white squares were on one side of the board, and all the black squares 
were on the opposite side, the Moran’s I value in this case would be close to +1, 
indicating perfect correlation or spatial segregation (neighbors tend to be equal). 
 To test a hypothesis statistically, Moran’s I values can be transformed into z-
scores. When a z-score > 1.96 or < -1.96, spatial autocorrelation is significant at the 5% 
level. Below are the z-scores and p-values for our dataset, for each city and question in 
our study. 
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City   Question   z-­‐score   p-­‐value  

New  York  City   Safety   36.592601   <  0.000001  

New  York  City   Social-­‐Class   45.701121   <  0.000001  

New  York  City   Uniqueness   48.036719   <  0.000001  

Boston   Safety   28.911159   <  0.000001  

Boston   Social-­‐Class   26.848713   <  0.000001  

Boston   Uniqueness   17.886751   <  0.000001  

Salzburg   Safety   12.565282   <  0.000001  

Salzburg   Social-­‐Class   14.318874   <  0.000001  

Salzburg   Uniqueness   9.621923   <  0.000001  

Linz   Safety   3.156045   0.001599  

Linz   Social-­‐Class   3.618932   0.000296  

Linz   Uniqueness   11.726760   <  0.000001  

Table 3s. Table of Moran’s I values for the four cities and three questions in our study. 
 
Crime Data  
 

We use crime data from the NYPD made available at 
http://projects.nytimes.com/crime/homicides/map/ in July 11, 2012. The data contains geotagged 
information on the number of homicides between 2003 and 2011 in the five boroughs of 
NYC. 
 
Spatially Filtered Regression 
  

We use a Getis Spatially Filtered Regression (GSFR), rather than an Ordinary 
Least Square (OLS) regression, because the use of OLS is only justified when the 
residuals of the OLS regression are not spatially autocorrelated (and they are in this case). 
If the residuals of the regression are spatially correlated, the statistical model is not fully 
specified, and hence, the model requires the incorporation of additional explanatory 
variables. In our case, we find that the residuals of the spatially filtered regression do not 
exhibit spatial autocorrelation (Moran’s I z-score=-0.23 p-value=0.82), implying that the 
model is fully specified. 

Getis Spatially Filtered Regression (GSFR) splits each explanatory variable (x) 
into two, a spatial (Lx) and a non-spatial component (x*). This helps produces estimates 
of the effect of each variable that are separate from its spatial variation. 

For each location i, the two variables associated with x are defined as 
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   x!∗ =
𝑥!𝑊!

𝐺!(𝑛 − 1)
   (1)  

   L!! = 𝑥! − 𝑥!∗ (2)  
 

where Wi=Σjwij is the sum of the spatial weights (in our case 1/distance between locations 
i and j), n is the number of locations considered and  
 

   𝐺! =
𝑤!"! 𝑥!
𝑥!!

  for j≠i (3)  

In a spatially filtered regression, each explanatory variable is replaced by a non-
spatial, starred (*) variable, and a spatial, L component.  

Table 4s shows the results for the OLS. The GSFR results are presented in the 
main text (table 3). Both tables use three groups of variables. First we have the 
population and area of each zip code, which are expected to be obvious correlate of 
crime. This is because crime should increase with population (more potential victims and 
perpetrators) and area (more possible locations where crime could have happened). We 
note that, since we are using logarithms, the combination of these two also control for 
population density. The second group of variables is income and age, also in logarithms. 
Income allows us to control for the wealth of a neighborhood, since crime tends to be 
more common in poorer areas. Also, younger neighborhoods tend to exhibit more crime, 
since it is well known that criminal behavior is more prevalent in males between 15 and 
30 years of age. Finally, we have variables on urban perception. We note that even in the 
OLS, the standard deviation in the perception of safety, and class, are significant 
correlates of the number of homicides, after controlling for income and age.  

 
 
OLS DEPENDENT VARIABLE  Log(Number of Homicides + 1)   

         
 Log(Population) Log(Area) Log(Income) Log(Age) Qsafety SQsafety Qclass SQclass 

Coefficients 0.7961 -0.1959   -0.0832 -0.2334 -0.1497 0.2047 

t-statistic 5.9193 -1.4377   -0.8089 -2.2104 -1.57 1.9266 

P-values 0 0.1536   0.4205 0.0293 0.1195 0.0568 

       R2 0.4799 

Coefficients 0.13798 0.5055 -1.0766 -1.9467     
t-statistic 1.4711 4.7807 -6.3537 -3.2483     
P-values 0.1443 0 0 0.0016     

       R2 0.6663 
Coefficients 0.1093 0.5508 -1.0986 -2.2215 -0.1487 -0.2294 0.1409 0.1927 
t-statistic 0.9737 5.1268 -5.57 -3.5709 -1.8712 -2.7551 1.7422 2.3535 
P-values 0.3326 0 0 0.0005 0.0642 0.007 0.0845 0.0206 

       R2 0.6988 

All logs in base 10. Area in square kilometers.       
Table 4s. Ordinary Least Squares Regression. 

 


