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Abstract

In economic systems, the mix of products that countries make or export has been shown to be a strong leading indicator of
economic growth. Hence, methods to characterize and predict the structure of the network connecting countries to the
products that they export are relevant for understanding the dynamics of economic development. Here we study the
presence and absence of industries in international and domestic economies and show that these networks are significantly
nested. This means that the less filled rows and columns of these networks’ adjacency matrices tend to be subsets of the
fuller rows and columns. Moreover, we show that their nestedness remains constant over time and that it is sustained by
both, a bias for industries that deviate from the networks’ nestedness to disappear, and a bias for the industries that are
missing according to nestedness to appear. This makes the appearance and disappearance of individual industries in each
location predictable. We interpret the high level of nestedness observed in these networks in the context of the neutral
model of development introduced by Hidalgo and Hausmann (2009). We show that the model can reproduce the high level
of nestedness observed in these networks only when we assume a high level of heterogeneity in the distribution of
capabilities available in countries and required by products. In the context of the neutral model, this implies that the high
level of nestedness observed in these economic networks emerges as a combination of both, the complementarity of inputs
and heterogeneity in the number of capabilities available in countries and required by products. The stability of nestedness
in industrial ecosystems, and the predictability implied by it, demonstrates the importance of the study of network
properties in the evolution of economic networks.
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Introduction

One of the best-documented findings of biogeography is that

rare species inhabit predominantly diverse patches, while ubiqui-

tous species tend to inhabit both, diverse and non-diverse locations

[1–4]. In ecology, the term nestedness is used to refer to this feature,

which has been observed numerous times in geographic patterns

[1–4] and mutualistic networks [5–8]. In the case of mutualistic

networks, nestedness implies that ecosystems are composed of a

core set of interactions to which the rest of the community is

attached [5]. The nestedness of interaction networks also implies

that specialist species interact mostly with generalist species, and

because generalist are less fluctuating [9], nestedness can help

enhance the survival of rare species [10]. Nestedness has also been

shown to enhance biodiversity [11] and overall ecosystem stability

[12], and therefore, it is considered an important structural

property of interaction networks in ecology.

Nestedness, however, is a general network measure that can be

used to characterize non-biological ecosystems, such as global and

local economies. In fact, in the past, the nestedness of economic

systems has been described for interaction networks, connecting

industries to other industries, such as the input-output matrices

introduced half a century ago by Leontief [13], or the supply

relationships in the New York Garment industry [14,15].

Here, we study the dynamics of economic geographic, instead.

We look at the presence and absences of industries across a wide

range of locations and show that (i) nestedness tends to remain

stable; (ii) it can be used to predict the location of industrial

appearances and disappearances; and (iii) can be accounted for by

a simple model.

In recent years, the structure of industry-location networks has

received a wide range of attention. A country’s level of income is

tightly connected to the mix of products that they export [16–18],

as measured by their Economic Complexity Index or ECI [16,17].

The ECI is a structural measure of the network connecting

countries to the products that they export that estimates the

amount of productive knowledge embedded in a country [16]

from information on who exports what. Countries that have an

income that is lower than what would be expected from their ECI,

such as China, India and Thailand, tend to grow faster than those

that have an income that exceeds what would be expected from

their current level of economic complexity, such as Greece and
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Portugal [16,17]. Hence, what countries export, as proxied by the

ECI, is a strong leading indicator of economic growth.

In the past, the network connecting countries to the products

that they export has been used to identify related varieties [19–21].

Here, products that tend to collocated, or co-exported, are

connected with a strength that grows with the probability of co-

export. Colocation networks, like the product space [20], have

been used to show that the productive structure of countries, and

regions, evolve as these move from the products that they do to

others that are close by in this network. The use of colocation data

provides an alternative to more data intensive methods, such as

networks connecting industries based on labor flows, labor

similarities [22] or plant level data [23]. This is because labor

and plant level data lacks standardized international coverage and

therefore cannot be used for international comparisons.

The evolution of a country’s product mix, however, is highly

path dependent [16,20]. Here, we look at the nestedness of the

industry location network and show that deviations from

nestedness can help predict these path dependencies for both,

industrial appearances and disappearances. These predictions add

to our ability to explain the evolution of a country’s product mix,

and therefore, variations in cross-country levels of income.

Moreover, we show that the high level of nestedness observed in

the data can be reproduced using a simple model when we assume

that the heterogeneity of capabilities available in a country, or

required by a product, is large.

The paper is structured as follows. First, we study the nestedness

of the industry locations matrix and find it to be highly stable over

time. We do this by using Almeida-Neto et al’s NODF [24,25]

(and Atmar and Patterson’s Temperature metric [26,27] in the

SM). We asses the stability of nestedness by comparing it with

both, static and dynamic null models, showing that the observed

level, and stability of the network’s nestedness, is larger than what

would be implied by these null models.

Next, we show that deviations from nestedness are associated,

respectively, with increases and decreases in the probability that an

industry will appear or disappear at a given location. Finally, to

provide an explanation of the observed phenomena we generalize

the model recently introduced by Hidalgo and Hausmann [16,28]

to show that this model can account for both, the high level of

nestedness values, and their stability.

Together, these results illustrate the relevance of nestedness for

the evolution of industrial ecosystems and shows that a simple

model can account for the high level of nestedness observed in

economic networks.

Data and Methods

The ideal data to study the patterns of economic geography

would consist of plant level information, collected for all countries,

with high spatiotemporal resolution, and following a disaggregate

standardized classification covering all economic sectors. Unfor-

tunately, such data is not available. Instead, we use yearly trade

data connecting 114 countries to 772 different products. Here,

products are classified according to the SITC-4 rev2 classification.

We use data from 1985 to 2009 to approximate the evolution of

the global patterns of production. Going forward, we refer to this

as the country-product network. We consider a country to be

connected to a product if that country’s exports per capita are

larger than 25% of the world’s exports per capita in that product

for at least five consecutive years. These thresholds reduce the

noise in the country product data coming from re-exports and

helps make sure that a country is connected to the products that

they export substantially and consistently. In Materials S1 we

check for the robustness of our results by using a different

definition of presences and absences based on Balassa’s [29]

Revealed Comparative Advantage (RCA), and find the results to

be robust to this alternative definition of presences.

We note two important limitations of international trade data.

First, it does not include products that are produced and

consumed domestically. This is because it only considers a product

once it has crossed an international border. Second, trade data is

limited to goods, and therefore does not include any data on

services. Despite these limitations, trade data is good for

international comparisons because it is collected in a standardized

classification that makes data for different countries comparable.

At the domestic level we use information on the tax residence of

Chilean firms collected by Chile’s Servicio de Impuestos Internos (SII),

which is the equivalent of the United States Internal Revenue

Service (IRS). Going forward, we refer to this dataset as the

municipality-industry network. The municipality-industry network

contains information on 100% of the firms that filed value-added

and/or income taxes in Chile between 2005 and 2008. This data

comprises firms from all economic sectors, whether they export or

not, and whether they produce goods or services. The municipal-

ity-industry network consists of the universe of Chilean firms

(nearly 900,000), which are classified into 700 different industries

and assigned to each of Chile’s 347 municipalities. Here we

consider an industry to be present in a municipality if one or more

firms, filing taxes under that industrial classification, declare that

municipality as their tax residency.

Finally, we note that the Chilean tax data has the limitation that

the tax residency of a firm can differ from the location of all of its

operations. Going forward, we take the fact that our results hold in

both, international trade and domestic tax data, as an indication

that they are not driven by the limitations of these datasets and

that they represent a natural characteristic of the economic

networks underlying them. For more details on both datasets see

the SM.

Results

Figures 1 a and b show the matrices of the country-product and

the municipality-industry networks (Respectively NODF = 70.81

and NODF = 83.35. We note that NODF = 100 indicates perfect

nestedness and NODF = 0 indicates no nestedness, [30]). Here, the

red lines indicate the diversity of each country and the ubiquity of

each product -the number of locations where it is present- (see

SM). These lines are used as a guide to indicate where presences

would be expected to end if the nestedness of these networks were

to be perfect. They can be thought of a simplified extinction line

[27]. Figure 1 c and d show their corresponding Bascompte et al.

null models [5]. In the Bascompte et al. null model, the probability

to find a presence in that same cell of the matrix is equal to the

average of the probability of finding it in that row and column in

the original matrix. The figures show that nestedness of the

original networks is clearly larger than that of their respective null

models, showing that industrial ecosystems are more nested than

what would be expected for comparable networks (respective null

model NODF of 35.060.6 and 46.560.3, errors are 99%

confidence intervals calculated from 100 implementations of the

null model).

Next, we study the temporal evolution of nestedness. In the case

of the country-product network, where a larger time series is

available (1985–2009), the percentage of presences almost doubled

during the observation period (Figure 1 e), going from less than

15% to nearly 25%. In the case of the municipality-industry

network, presences went up from 22.9% to 25.7% between 2005

Nestedness of Industrial Ecosystems
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and 2008. The nestedness of both, the country-product and the

municipality-industry networks, however, remained relatively

stable during this period as measured by NODF (green lines in

Figure 1 f–g and SM).

We test the constancy of these networks’ nestedness by

comparing them with two null models. The first one is an

ensemble of null models [5] calculated for each respective year

(blue lines in Figure 1 f–g). This shows that the nestedness of the

empirical networks is always significantly higher than their

randomized counterpart. Then, we show that a network subject

to the same exact turnover dynamics would have lost its nestedness

during the observation period. We do this by starting with the

empirically observed network and simulate its evolution by

sequentially adding and subtracting a number of links equal to

the one gained or lost by the original network. We do this

following the probability distributions defined by the Bascompte et

al null model [5] to make sure that these additions and

subtractions keep the degree sequence of the network close to

the original one. Otherwise, the lost of nestedness could be a

consequence of changes in the underlying distributions. This

dynamic null model represent a strong control, since it preserves

the exact density of the network and also its turnover dynamics, as

the number of links that appeared and disappeared each year, in

each country, and for each product is exactly that observed in the

original data. The dynamic model, however, does not preserve

nestedness, showing that its stability comes from the specific way in

which links appear and disappear from the network, and not due

to a more trivial dynamics. In fact, when the appearance and

disappearance of the links are chosen differently, the nestedness of

the network quickly evaporates (red line in Figure 1 f–g). This

allows us to conclude that the stability of nestedness observed in

these networks is higher than what would be expected from a null

model with the same general turnover dynamics.

Could the stability of nestedness be used to predict appearances

and disappearances? In the past, nestedness has been used to make

prediction of the biota available in ecological patches, albeit not in

economic networks [2,31]. For the country-product network we

consider as an appearance an increase in exports per capita from

less than 5% of the world average to more than 25%. To make

sure that we are capturing structural changes and not mere

fluctuations, we ask the increase in exports per capita of a country

to be from less than 5%, for five consecutive years, to more than

25% sustained for at least 5 years. Hence, our final year of

observation is 2005. Conversely, we count disappearances as a

decrease in exports per capita of a country from 25% or more of

the world’s average to 5% or less (also sustained for at least 5

years). For the municipality-industry network we count appear-

ances as changes from zero industries to one or more, and

disappearances as changes from one or more industries to zero.

Figure 2 a–d visualizes the position in these networks’

adjacency matrices of the industries that were observed to appear

(green) and disappear (orange) in the intervening period. We

predict these appearances and disappearances by fitting each

observation in the industry-location network using a probit model

that considers information on the diversity of the location and the

ubiquity of the industry for the initial year (see SM). This

represents a parameterization of nestedness and is similar to

previous approaches that have used nestedness to make predic-

tions [2,31]:

Mc,p,t~akc,tzbkp,tzc kc,t|kp,t

� �
zec,p,t ð1Þ

Figure 1. The nestedness of international and domestic economies. a Country-product network for the year 2000. b Municipality-industry
network for the year 2005. c Bascompte et al. null model for the matrix shown in a. d Bascompte et al. null model for the matrix presented in b. In a–
d red lines indicate the diversity of a location and the ubiquity of an industry (see full text for details). e Evolution of the density, or fill, of the country-
product network between 1985 and 2009. f Evolution of the NODF of the country-product network between 1985 and 2009 (green), its
corresponding Bascompte et al. null model (blue, upper and lower lines indicate 95% conf. intervals), and that of a matrix that started identical to that
for 1985, but that was evolved by considering an equal number of appearances and disappearances than in the original data (red, upper and lower
lines indicate 95% conf. interval). g Same as f but for the municipality-industry network (see SM for results with Atmar and Patterson’s temperature
metric).
doi:10.1371/journal.pone.0049393.g001
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Here Mc,p,t is the industry-location network’s adjacency matrix,

kc,tis the diversity of location c at time t (defined as its degree

centrality or kc,t~
P

p Mc,p,t), kp,t is the ubiquity of product p at

time t (defined as its degree centrality or kp,t~
P

c Mc,p,t), and

where we have also added an interaction term taking the product

between diversity (kc,t) and ubiquity (kp,t). The error term is

represented by ec,p,t. We find that all coefficients are highly

significant, meaning that a model that would only consider

diversity or ubiquity, or both of them without an interaction term,

would not be as accurate.

In general, we find that the probit regression accurately explains

presences and absences (average Efron’s pseudo-R2 = 0.5360.02

for the country-product network and 0.5460.01 for the munic-

ipality-industry network). Here, however, we use the deviance

residuals of this regression to predict future appearances and

disappearances. Negative residuals, represent unexpected absences

[2] and are used to rank candidates for new appearances. Positive

deviance residuals, on the other hand, represent unexpected

presences [2] and are used to rank the likelihood that an industry

will disappear in the future. (Figures 2 e–h).

But how accurate are these predictions? We quantify the

accuracy of predictions by using the area under the Response

Operator Characteristic curve or ROC curve [32,33]. An ROC

curve plots the true positive rate of a prediction as a function of its

false positive rate. The Area Under the Curve, or AUC, is

commonly used to measure the accuracy of the prediction

criterion [32,33]. A random prediction will find true positives

and false positives at the same rate, and therefore will give an AUC

of 0.5. A perfect prediction, on the other hand, will find all true

positives before hitting any false positive and will be characterized

by an AUC = 1. Figures 2 i–l show the ROC curves obtained

when the appearances and disappearances shown in Figures 2 a–d
are predicted using the deviance residuals obtained from (1) for

data on the initial year. In all cases, the ROC curves of these

predictions (in blue), have an area that is significantly larger than

the one expected for a random prediction (in red), showing that

nestedness can help predict which links in these industry-location

networks are more likely to appear or disappear.

Finally, we extend this analysis to all pairs of years. Figures 3 a
and b show the number of events (appearances or disappearances)

for each pair of years for the international trade data. As expected,

there are fewer events for pairs of years that are close by in time.

Also, we note that the number of appearances is larger than that of

disappearances, a fact that is consistent with the observed increase

in the density of the network. Figure 3 c shows the AUC value

obtained for each pair of years, showing that for the country

product network, disappearances (Fig. 3 b) are predicted much

more accurately than appearances.

The time series data available for Chile’s municipality-industry

network is much more limited. Hence, we show the average

number of events (Figure 3 d), and the average AUC for networks

separated by a given number of years (Figure 3 e). Here, we find

that predictions of appearances and disappearance are both

remarkably strong, and that there is no statistically significant

difference in the predictability of both kinds of events.

To conclude this section, we look at the position in the

network’s adjacency matrix of appearances and disappearances. If

the stability of nestedness is related to the location in this matrix of

industrial appearances and disappearances, then appearances

should be closer to the diversity-ubiquity line than random

appearances. By the same token, disappearances should be farther

away. For each event, we estimate its distance to the diversity and

the ubiquity lines illustrated in figures 1 a–d and figures 2 a–d
using,

D~Sign((c0,p0)i) min
~IIp{(c0,p0)i

Nc

,
~IIc{(c0,p0)i

Np

 !
ð2Þ

Here~IIc and~IIP are respectively the lines of diversity and ubiquity

(i.e. the red lines in Figure 1 a–d), (c0,p0)i is the position in the

adjacency matrix of the ith event, and Nc and Np are respectively

the number of locations and industries in the network. We use Nc

and Np to normalize the maximum possible vertical and horizontal

distances to 1 and thus make sure that the measure is less sensitive

to the rectangularity of the different matrices. The I operator

represents the Euclidean distance and Sign((c0,p0)i)~1 if the

position of the event is outside of the nested area defined by both
~IIc and~IIP and 21 otherwise (see SM). As a benchmark comparison

we consider an equal number of appearances and disappearances,

but draw these from a random set of eligible positions in the

adjacency matrix.

Figures 3 f–i compare the distributions of distances (D) with

those associated with an equal number of random appearances or

disappearances. We find that appearances tend to lie significantly

closer to the diversity/ubiquity lines than what would be expected

for an equal number of random events (ANOVA F = 59,935,

p-value = 0 for the country-product network and ANOVA

F = 10895 p-value = 0 for the municipality-industry network). In

the case of disappearances, the opposite holds true. The observed

appearances tend to be mostly located outside of the nested area

defined by the diversity/ubiquity lines. Our random expectation,

however, would be for disappearances to come mostly from the

highly populated area inside the diversity/ubiquity lines. Once

again, differences between observations and null model expecta-

tions are highly significant for both networks (ANOVA F = 6246

p-value = 0 for the country-product network and ANOVA

F = 6463 p-value = 0 for the municipality-industry network).

Finally, we show that a modified version of the neutral

development model introduced in [17], and solved analytically

in [28], can be used to explain both, the observed level of

nestedness and its stability. This neutral development model

consists of three simple assumptions;

(i) Products require a set of non-tradable inputs, or capabilities,

to be produced.

(ii) Locations are characterized by a set of capabilities.

(iii) Locations can only produce the products for which they

have all the required capabilities.

The model is formalized by introducing three mathematical

objects: two matrices and one operator. Ppa is a matrix that is 1 if

product p requires capability a, and 0 otherwise. Cca is a matrix

that is 1 if location c has capability a, and zero otherwise. Finally

(iii) provides a way of mapping Cca and Ppa into Mcp, since it implies

that Mcp = 1 if the set of capabilities required by a product is a

subset of the capabilities available in a location. Mathematically

(iii) can be expressed as the following operator:

Mc,p~1 if
X

a
Pp,a~

X
a

Cc,aPp,a and Mc,p~0 otherwise: ð3Þ

More details about the model can be found in [28].

To compare the model to the data we need to assume the form

of Cc,a and Pp,a. In [28] the model was solved analytically by

assuming that both, Cc,a and Pp,a were random matrices. This

means that each location has a capability with probability r and
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that products require a capability with a probability q. From this

we can trivially deduce that the number of capabilities available in

a random country, or required by a random product, follows a

binomial distribution. Because of this, we call this implementation

of the neutral model: the binomial model. The third and final

parameter that needs to be specified is the number of capabilities

Figure 2. Nestedness predicts appearing and disappearing industries. a The country-product network for the year 1993 is shown in grey.
Green dots show the location of industries that were observed to appear between 1993 and 2000. b Same as a, but with the industries that
disappeared in that period shown in Orange. c The municipality-industry network is shown in grey and green dots show the location of industries
that were observed to appear between 2005 and 2008. d Same as c, but with the industries that disappeared in that period shown in Orange. e–h
Deviance residuals of the regression presented in (1) applied to the presences-absences shown in a–d. i–l ROC curves summarizing the ability of the
deviance residuals shown in e–h, to predict the appearances and disappearances highlighted in a–d.
doi:10.1371/journal.pone.0049393.g002
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required by a product (Na). This is because the number of locations

Nc, and the number of products Np, is fixed to match the number of

locations and products observed in the data.

Effectively, the binomial model has two free parameters. This is

because it is always possible to determine r, q or Na once the fill of

the Mc,p matrix is known. The binomial model has been shown to

reproduce the distribution of diversities, ubiquities, co-exports, and

the relationship between diversity and ubiquity of the country-

product network using Na = 80, r = 0.87 and q = 0.18. In addition

to the binomial model we consider an alternative form that has the

same number of parameters. We call this the uniform model, since

in this case the number of capabilities that a country has is

distributed uniformly between 0 and R and the number of

capabilities that a product requires is distributed uniformly

between 0 and Q. Hence, in this model country c has a capability

a with probability equal to rc = min(1,R6c/Nc). We take the

minimum to ensure rc is upper bounded by 1. In the uniform

model, allowing values of R larger than one allows having a small

number of fully diversified countries.

Figures 4a and 4b illustrate the binomial model and the uniform

model, respectively. For both models, we show their respective Cc,a

and Pp,a matrices together with their resulting country-product

network Mc,p. We find that in both cases the resulting Mc,p matrices

are significantly more nested than the null model, yet the

nestedness emerging from the uniform model is considerably

larger, resembling closely the values observed for the country-

product network. This comes from the fact that countries with a

diverse capability endowment are likely to make a wide range of

products, whereas countries with few capabilities will only be able

to make those products that require few capabilities. This last

observation is implied by assumption (iii), and is therefore true for

both, the binomial and the uniform model. Yet, the large degree of

heterogeneity among countries and products present in the

uniform model enhances the nestedness implied by the comple-

mentarity assumption.

Figure 4 c compares the nestedness of the country-product

network with the one found for the neutral models and null model.

Here we plot nestedness as a function of the fill of the network

since this is a good proxy for time and the neutral models and null

model do not have an explicit time dimension. We implement this

comparison by generating an initial Pp,a matrix that is kept

constant during the procedure. In the binomial model we choose

q = 0.18, and for the uniform model we take Q = 0.21. We

interpret this as an assumption that productive technologies

change slowly during the time frames considered, and therefore,

the increases in diversification observed in the empirical network

comes from locations catching up to produce the products that

more diversified locations were already making. To create Mc,p, we

generate 100 Cc,a matrices for 200 different values of r and R. For

the binomial model we consider values of r between 0.9 and 0.95,

while for the uniform model we consider values of R between 0.9

and 1.07. In both cases we set the total number of capabilities in

the system to Na = 80. These values are chosen to ensure that the

fills of the modeled Mc,p matrices are close to the ones observed in

the original data. The analysis shows that the nestedness of the

Mc,p matrices implied by the neutral model matches the ones

observed in the economic networks only for the uniform model. In

the context of assumptions (i)–(iii), we interpret this result as

evidence that heterogeneity in the distribution of capabilities

available in a country, or required by a product, are needed to

generate the high levels of nestedness observed in these economic

networks.

Discussion

In this paper we showed that industry-location networks are

nested, just like industry-industry networks [13–15], or their

biological counterparts [1–4,26,27]. Using time series data for

both, international and domestic economies, we showed that the

nestedness of these networks tends to remain constant over time

and that this empirical regularity can be used to predict the pattern

of industrial appearances and disappearances over time. More-

over, we showed that the high level of nestedness observed in the

world can be accounted for by a simple model, but only if we

Figure 3. Predicting appearances and disappearances using nestedness. a Number of appearances for every pair of years in the country-
product network. b Number of disappearances for every pair of years for the country-product network. c Accuracy of the predictions for each pair of
years measured using the Area Under the ROC Curve (AUC). d Average number of appearances and disappearances for the Chilean data (error bar
smaller than symbol). e Average accuracy of the predictions for the municipality-industry network. Error bars indicate 99% confidence intervals. f
Distribution for the distance to the diversity-ubiquity line obtained for the observed appearances and for an equal number of random appearances. g
Same as f but for disappearances. h Same as f, but for the municipality-industry network. i Same as h but for disappearances.
doi:10.1371/journal.pone.0049393.g003
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assume a relatively large degree of heterogeneity in the number of

capabilities present in a country or required by a product.

The strong link between biological and industrial ecosystems

opens a variety of questions. First, is the geographical nestedness

described in this paper a consequence of industry-industry

nestedness, or are these independent phenomena? Second, are

the mechanisms generating nestedness at the global level the same

that generate nestedness at the national level?

In this paper we showed that the geographical nestedness of

industries holds at both, the global and at the national scale. This

is certainly not the case for biological ecosystems, since the biota of

the artic is not a subset of that of the rain forest. The fact that the

nestedness of industrial ecosystems holds at scales as large as that

of the world economy suggests that the coupling between

international economies is strong. This highlights the importance

of understanding the global economy as a unified ecosystem, since

after all, its nestedness suggests that it appears to be working as

one.

The predictability implied by nestedeness, on the other hand,

has important implications in a world where income is connected

to the mix of products that a country makes [17,18]. Ultimately,

the dynamics implied by nestedness could represent a fundamental

constraint to the speed at which international incomes could either

converge or diverge.

More research will certainly need to be done on both, the causes

of the structures and the time patterns that were uncovered in this

paper. This will require strengthening the bridge between the

natural and social sciences because, if there is something that the

nestedness of economies show, is that humans tend to generate

patterns in social systems that strongly mimic those found in

nature [34,35].
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