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LETTERS

Understanding individual human mobility patterns
Marta C. González1, César A. Hidalgo1,2 & Albert-László Barabási1,2,3

Despite their importance for urban planning1, traffic forecasting2

and the spread of biological3–5 and mobile viruses6, our under-
standing of the basic laws governing human motion remains
limited owing to the lack of tools to monitor the time-resolved
location of individuals. Here we study the trajectory of 100,000
anonymized mobile phone users whose position is tracked for a
six-month period. We find that, in contrast with the random tra-
jectories predicted by the prevailing Lévy flight and random walk
models7, human trajectories show a high degree of temporal and
spatial regularity, each individual being characterized by a time-
independent characteristic travel distance and a significant prob-
ability to return to a few highly frequented locations. After
correcting for differences in travel distances and the inherent
anisotropy of each trajectory, the individual travel patterns col-
lapse into a single spatial probability distribution, indicating that,
despite the diversity of their travel history, humans follow simple
reproducible patterns. This inherent similarity in travel patterns
could impact all phenomena driven by human mobility, from
epidemic prevention to emergency response, urban planning
and agent-based modelling.

Given the many unknown factors that influence a population’s
mobility patterns, ranging from means of transportation to job- and
family-imposed restrictions and priorities, human trajectories are often
approximated with various random walk or diffusion models7,8.
Indeed, early measurements on albatrosses9, followed by more recent
data on monkeys and marine predators10,11, suggested that animal tra-
jectory is approximated by a Lévy flight12,13—a random walk for which
step sizeDr follows a power-law distribution P(Dr) ,Dr2(1 1 b), where
the displacement exponent b , 2. Although the Lévy statistics for some
animals require further study14, this finding has been generalized to
humans7, documenting that the distribution of distances between con-
secutive sightings of nearly half-a-million bank notes is fat-tailed. Given
that money is carried by individuals, bank note dispersal is a proxy
for human movement, suggesting that human trajectories are best
modelled as a continuous-time random walk with fat-tailed displace-
ments and waiting-time distributions7. A particle following a Lévy
flight has a significant probability to travel very long distances in a
single step12,13, which seems to be consistent with human travel pat-
terns: most of the time we travel only over short distances, between
home and work, whereas occasionally we take longer trips.

Each consecutive sighting of a bank note reflects the composite
motion of two or more individuals who owned the bill between
two reported sightings. Thus, it is not clear whether the observed dis-
tribution reflects the motion of individual users or some previously
unknown convolution between population-based heterogeneities and
individual human trajectories. Contrary to bank notes, mobile phones
are carried by the same individual during his/her daily routine, offering
the best proxy to capture individual human trajectories15–19.

We used two data sets to explore the mobility pattern of indivi-
duals. The first (D1) consisted of the mobility patterns recorded over

a six-month period for 100,000 individuals selected randomly from a
sample of more than 6 million anonymized mobile phone users. Each
time a user initiated or received a call or a text message, the location of
the tower routeing the communication was recorded, allowing us
to reconstruct the user’s time-resolved trajectory (Fig. 1a, b). The
time between consecutive calls followed a ‘bursty’ pattern20 (see
Supplementary Fig. 1), indicating that although most consecutive
calls are placed soon after a previous call, occasionally there are long
periods without any call activity. To make sure that the obtained
results were not affected by the irregular call pattern, we also studied
a data set (D2) that captured the location of 206 mobile phone users,
recorded every two hours for an entire week. In both data sets, the
spatial resolution was determined by the local density of the more
than 104 mobile towers, registering movement only when the user
moved between areas serviced by different towers. The average ser-
vice area of each tower was approximately 3 km2, and over 30% of the
towers covered an area of 1 km2 or less.

To explore the statistical properties of the population’s mobility
patterns, we measured the distance between user’s positions at con-
secutive calls, capturing 16,264,308 displacements for the D1 and
10,407 displacements for the D2 data set. We found that the distri-
bution of displacements over all users is well approximated by a
truncated power-law:

P Drð Þ~ DrzDr0ð Þ{b
exp {Dr=kð Þ ð1Þ

with exponent b 5 1.75 6 0.15 (mean 6 standard deviation),
Dr0 5 1.5 km and cutoff values k D1

j ~400 km and k D2
j ~80 km

(Fig. 1c, see the Supplementary Information for statistical valida-
tion). Note that the observed scaling exponent is not far from
b 5 1.59 observed in ref. 7 for bank note dispersal, suggesting that
the two distributions may capture the same fundamental mechanism
driving human mobility patterns.

Equation (1) suggests that human motion follows a truncated
Lévy flight7. However, the observed shape of P(Dr) could be explained
by three distinct hypotheses: first, each individual follows a Lévy tra-
jectory with jump size distribution given by equation (1) (hypothesis
A); second, the observed distribution captures a population-based
heterogeneity, corresponding to the inherent differences between indi-
viduals (hypothesis B); and third, a population-based heterogeneity
coexists with individual Lévy trajectories (hypothesis C); hence, equa-
tion (1) represents a convolution of hypotheses A and B.

To distinguish between hypotheses A, B and C, we calculated the
radius of gyration for each user (see Supplementary Information), inter-
preted as the characteristic distance travelled by user a when observed up
to time t (Fig. 1b). Next, we determined the radius of gyration distri-
bution P(rg) by calculating rg for all users in samples D1 and D2, finding
that they also can be approximated with a truncated power-law:

P rg

� �
~ rgzr0

g

� �{br

exp {rg

�
k

� �
ð2Þ
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with r0
g ~5:8 km, br 5 1.65 6 0.15 and k 5 350 km (Fig. 1d, see

Supplementary Information for statistical validation). Lévy flights
are characterized by a high degree of intrinsic heterogeneity, raising
the possibility that equation (2) could emerge from an ensemble of
identical agents, each following a Lévy trajectory. Therefore, we
determined P(rg) for an ensemble of agents following a random walk
(RW), Lévy flight (LF) or truncated Lévy flight (TLF) (Fig. 1d)8,12,13.
We found that an ensemble of Lévy agents display a significant degree
of heterogeneity in rg; however, this was not sufficient to explain the
truncated power-law distribution P(rg) exhibited by the mobile
phone users. Taken together, Fig. 1c and d suggest that the difference
in the range of typical mobility patterns of individuals (rg) has a
strong impact on the truncated Lévy behaviour seen in equation
(1), ruling out hypothesis A.

If individual trajectories are described by an LF or TLF, then
the radius of gyration should increase with time as rg(t) , t3/(2 1 b)

(ref. 21), whereas, for an RW, rg(t) , t1/2; that is, the longer we
observe a user, the higher the chance that she/he will travel to areas
not visited before. To check the validity of these predictions, we
measured the time dependence of the radius of gyration for users
whose gyration radius would be considered small (rg(T) # 3 km),
medium (20 , rg(T) # 30 km) or large (rg(T) . 100 km) at the end
of our observation period (T 5 6 months). The results indicate that

the time dependence of the average radius of gyration of mobile
phone users is better approximated by a logarithmic increase, not
only a manifestly slower dependence than the one predicted by a
power law but also one that may appear similar to a saturation
process (Fig. 2a and Supplementary Fig. 4).

In Fig. 2b, we chose users with similar asymptotic rg(T) after
T 5 6 months, and measured the jump size distribution P(Drjrg)
for each group. As the inset of Fig. 2b shows, users with small rg travel
mostly over small distances, whereas those with large rg tend to
display a combination of many small and a few larger jump sizes.
Once we rescaled the distributions with rg (Fig. 2b), we found that the
data collapsed into a single curve, suggesting that a single jump size
distribution characterizes all users, independent of their rg. This
indicates that P Dr rg

��� �
*r{a

g F Dr
�

rg

� �
, where a < 1.2 6 0.1 and

F(x) is an rg-independent function with asymptotic behaviour, that
is, F(x) , x2a for x , 1 and F(x) rapidly decreases for x? 1.
Therefore, the travel patterns of individual users may be approxi-
mated by a Lévy flight up to a distance characterized by rg. Most
important, however, is the fact that the individual trajectories are
bounded beyond rg; thus, large displacements, which are the source
of the distinct and anomalous nature of Lévy flights, are statistically
absent. To understand the relationship between the different expo-
nents, we note that the measured probability distributions are related

Figure 1 | Basic human mobility patterns. a, Week-long trajectory of 40
mobile phone users indicates that most individuals travel only over short
distances, but a few regularly move over hundreds of kilometres. b, The
detailed trajectory of a single user. The different phone towers are shown as
green dots, and the Voronoi lattice in grey marks the approximate reception
area of each tower. The data set studied by us records only the identity of the
closest tower to a mobile user; thus, we can not identify the position of a user
within a Voronoi cell. The trajectory of the user shown in b is constructed
from 186 two-hourly reports, during which the user visited a total of 12
different locations (tower vicinities). Among these, the user is found on 96
and 67 occasions in the two most preferred locations; the frequency of visits

for each location is shown as a vertical bar. The circle represents the radius of
gyration centred in the trajectory’s centre of mass. c, Probability density
function P(Dr) of travel distances obtained for the two studied data sets D1

and D2. The solid line indicates a truncated power law for which the
parameters are provided in the text (see equation (1)). d, The distribution
P(rg) of the radius of gyration measured for the users, where rg(T) was
measured after T 5 6 months of observation. The solid line represents a
similar truncated power-law fit (see equation (2)). The dotted, dashed and
dot-dashed curves show P(rg) obtained from the standard null models (RW,
LF and TLF, respectively), where for the TLF we used the same step size
distribution as the one measured for the mobile phone users.
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by P Drð Þ~
Ð?

0
P Dr rg

��� �
P rg

� �
drg, which suggests (see Supplemen-

tary Information) that up to the leading order we have
b 5 br 1 a 2 1, consistent, within error bars, with the measured
exponents. This indicates that the observed jump size distribution
P(Dr) is in fact the convolution between the statistics of individual
trajectories P(Drgjrg) and the population heterogeneity P(rg), con-
sistent with hypothesis C.

To uncover the mechanism stabilizing rg, we measured the
return probability for each individual Fpt(t) (first passage time
probability)21,22, defined as the probability that a user returns to the
position where he/she was first observed after t hours (Fig. 2c). For a
two-dimensional random walk, Fpt(t) should follow ,1/(t ln2(t))
(ref. 21). In contrast, we found that the return probability is char-
acterized by several peaks at 24 h, 48 h and 72 h, capturing a strong
tendency of humans to return to locations they visited before,
describing the recurrence and temporal periodicity inherent to
human mobility23,24.

To explore if individuals return to the same location over and over,
we ranked each location on the basis of the number of times an
individual was recorded in its vicinity, such that a location with
L 5 3 represents the third-most-visited location for the selected indi-
vidual. We find that the probability of finding a user at a location with
a given rank L is well approximated by P(L) , 1/L, independent of the
number of locations visited by the user (Fig. 2d). Therefore, people
devote most of their time to a few locations, although spending their
remaining time in 5 to 50 places, visited with diminished regularity.
Therefore, the observed logarithmic saturation of rg(t) is rooted in
the high degree of regularity in the daily travel patterns of individuals,
captured by the high return probabilities (Fig. 2b) to a few highly
frequented locations (Fig. 2d).

An important quantity for modelling human mobility patterns is
the probability density function Wa(x, y) to find an individual a in a
given position (x, y). As it is evident from Fig. 1b, individuals live and
travel in different regions, yet each user can be assigned to a well
defined area, defined by home and workplace, where she or he can
be found most of the time. We can compare the trajectories of dif-
ferent users by diagonalizing each trajectory’s inertia tensor, provid-
ing the probability of finding a user in a given position (see Fig. 3a) in
the user’s intrinsic reference frame (see Supplementary Information
for the details). A striking feature of W (x, y) is its prominent spatial
anisotropy in this intrinsic reference frame (note the different scales
in Fig. 3a); we find that the larger an individual’s rg, the more pro-
nounced is this anisotropy. To quantify this effect, we defined the
anisotropy ratio S ; sy/sx, where sx and sy represent the standard
deviation of the trajectory measured in the user’s intrinsic reference
frame (see Supplementary Information). We found that S decreases
monotonically with rg (Fig. 3c), being well approximated with
S*r{g

g for g < 0.12. Given the small value of the scaling exponent,
other functional forms may offer an equally good fit; thus, mecha-
nistic models are required to identify if this represents a true scaling
law or only a reasonable approximation to the data.

To compare the trajectories of different users, we removed the
individual anisotropies, rescaling each user trajectory with its
respective sx and sy. The rescaled ~WW x=sx ,y

�
sy

� �
distribution

(Fig. 3b) is similar for groups of users with considerably different
rg, that is, after the anisotropy and the rg dependence are removed
all individuals seem to follow the same universal ~WW ~xx,~yyð Þ probabi-
lity distribution. This is particularly evident in Fig. 3d, where we
show the cross section of ~WW x=sx ,0ð Þ for the three groups of
users, finding that apart from the noise in the data the curves are
indistinguishable.

Taken together, our results suggest that the Lévy statistics observed
in bank note measurements capture a convolution of the population
heterogeneity shown in equation (2) and the motion of individual
users. Individuals display significant regularity, because they return
to a few highly frequented locations, such as home or work. This
regularity does not apply to the bank notes: a bill always follows
the trajectory of its current owner; that is, dollar bills diffuse, but
humans do not.

The fact that individual trajectories are characterized by the
same rg-independent two-dimensional probability distribution
~WW x=sx ,y

�
sy

� �
suggests that key statistical characteristics of indi-

vidual trajectories are largely indistinguishable after rescaling.
Therefore, our results establish the basic ingredients of realistic
agent-based models, requiring us to place users in number propor-
tional with the population density of a given region and assign each
user an rg taken from the observed P(rg) distribution. Using the
predicted anisotropic rescaling, combined with the density function
~WW x,yð Þ, the shape of which is provided as Supplementary Table 1,
we can obtain the likelihood of finding a user in any location. Given
the known correlations between spatial proximity and social links,
our results could help quantify the role of space in network develop-
ment and evolution25–29 and improve our understanding of diffusion
processes8,30.
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Figure 2 | The bounded nature of human trajectories. a, Radius of gyration
Ærg(t)æ versus time for mobile phone users separated into three groups
according to their final rg(T), where T 5 6 months. The black curves
correspond to the analytical predictions for the random walk models,
increasing with time as Ærg(t)æ | LF,TLF , t3/2 1 b (solid curve) and
Ærg(t)æ | RW , t0.5 (dotted curve). The dashed curves corresponding to a
logarithmic fit of the form A 1 B ln(t), where A and B are time-independent
coefficients that depend on rg. b, Probability density function of individual
travel distances P(Dr | rg) for users with rg 5 4, 10, 40, 100 and 200 km. As the
inset shows, each group displays a quite different P(Dr | rg) distribution. After
rescaling the distance and the distribution with rg (main panel), the different
curves collapse. The solid line (power law) is shown as a guide to the eye.
c, Return probability distribution, Fpt(t). The prominent peaks capture the
tendency of humans to return regularly to the locations they visited before,
in contrast with the smooth asymptotic behaviour ,1/(t ln(t)2) (solid line)
predicted for random walks. d, A Zipf plot showing the frequency of visiting
different locations (loc.). The symbols correspond to users that have been
observed to visit nL 5 5, 10, 30 and 50 different locations. Denoting with (L),
the rank of the location listed in the order of the visit frequency, the data are
well approximated by R(L) , L21. The inset is the same plot in linear scale,
illustrating that 40% of the time individuals are found at their first two
preferred locations; bars indicate the standard error.

NATURE | Vol 453 | 5 June 2008 LETTERS

781
Nature   Publishing Group©2008



Received 19 December 2007; accepted 27 March 2008.

1. Horner, M. W. & O’Kelly, M. E. S Embedding economies of scale concepts for hub
networks design. J. Transp. Geogr. 9, 255–265 (2001).

2. Kitamura, R., Chen, C., Pendyala, R. M. & Narayaran, R. Micro-simulation of daily
activity-travelpatternsfortraveldemandforecasting.Transportation 27,25–51(2000).
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2

I. DATA

A. D1 Dataset: This dataset was collected by a European mobile phone carrier for billing and

operational purposes. It contains the date, time and coordinates of the phone tower routing the

communication for each phone call and text message sent or received by 6 million costumers. The

dataset summarizes 6 months of activity. To guarantee anonymity, each user is identified with a

security key (hash code). Furthermore, we only know the coordinates of the tower routing the

communication, hence a user’s location is not known within atower’s service area. Each tower

serves an area of approximately 3km2. Due to tower coverage limitations driven by geographical

constraints and national frontiers no jumps exceeding∼ 1, 000 km can be observed in the dataset.

The research was performed on a random set of100, 000 selected from those making or re-

ceiving at least one phone call or SMS during the first and lastmonth of the study, translating to

16, 364, 308 recorded positions. We removed all jumps that took users outside the continental ter-

ritory. We did not impose any additional criterion regarding the calling activity to avoid possible

selection biases in the mobility pattern.

B. D2 Dataset: Some services provided by the mobile phone carrier, like pollen and traffic

forecasts, rely on the approximate knowledge of customer’slocation at all times of the day. For

customers that signed up for location dependent services, the date, time and the closest tower

coordinates are recorded on a regular basis, independent oftheir phone usage. We were provided

such records for1, 000 users, among which we selected the group of users whose coordinates

were recorded at every two hours during an entire week, resulting in 206 users for which we have

10, 613 recorded positions. Given that these users were selected based on their actions (signed up

to the service), in principle the sample cannot be considered unbiased, but we have not detected

any particular bias for this data set.

For each user inD1 andD2 we sorted the time resolved sequence of positions and constructed

individual trajectories.
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FIG. S1: Interevent time distributionP (∆T ) of calling activity.∆T is the time elapsed between consecutive

communication records (phone calls and SMS, sent or received) for the same user. Different symbols

indicate the measurements done over groups of users with different activity levels (# calls). The inset shows

the unscaled version of this plot. The solid line corresponds to Eq. (S1).

II. CHARACTERIZING INDIVIDUAL CALLING ACTIVITY

Communication patterns are known to be highly heterogeneous: some users rarely use the mo-

bile phone while others make hundreds or even thousands of calls each month [1]. To characterize

the dynamics of individual communication activity, we grouped users based on their total number

of calls. For each user we measured the probability that the time interval between two consecutive

calls is∆T [2–4]. The inset of Fig. S1 shows that users with less activity tend to have longer

waiting times between consecutive calls. By rescaling the axis with the average interevent time

∆Ta as∆TaP (∆T ) and∆T/∆Ta the obtained distributions collapse into a single curve (Fig. S1).

Hence the measured interevent time distribution can be approximated by the expressionP (∆T )



4

= 1/∆TaF(∆T/∆Ta), whereF(x) is independent of the average activity level of the population.

This is a universal characteristic of the system and it agrees with earlier results on the tempo-

ral patterns of e-mail communication [5]. In addition, we find that the data in Fig. S1 is well

approximated by

P (∆T ) = (∆T )α exp(∆T/τc), (S1)

where the power-law exponentα = 0.9±0.1 is followed by an exponential cutoff ofτc ≈ 48 days.

Equation (S1) is shown by a solid line in the inset of Fig. S1 and its scaled version is presented in

the main panel of Fig. S1. Here we used∆Ta = 8.2 hours, which is the average interevent time

measured for the whole population. The heterogeneity in thecommunication pattern translates

into heterogeneous sampling for theD1 dataset. TheD2 dataset, with records at every two hours,

obviously does not display this heterogeneity. Below we show that this temporal heterogeneity

does not affect our results on the observed travel patterns.

III. OBSERVATIONS AT A FIXED INTEREVENT TIME

Given the widely varying distribution of the interevent times between two calls (an therefore

the localization data), we need to investigate if the observed displacement statistics are affected

by this sampling heterogeneity. Using theD1 dataset, we calculated the displacement distribution

P (∆r) for consecutive calls separated by a time∆To ± 0.05∆To, where∆To ranged from20 min

to one day. Figure S2 shows that for∆To < 4 h, the observed displacements are bounded by the

maximum distance that users can travel in the∆To time interval. For∆To ≥ 8 hours we already

observe∆rmax ∼ 1, 000 km, which corresponds to the largest displacement we could possible

observe given the area under study (such large jumps likely are the result of airline travel). We

observe that the resultingP (∆r) distributions for different∆To is again well approximated by

a truncated power-law with an exponentβ = 1.75. This agrees with the exponent found when

we studied all consecutive calls (see Fig. 1C), suggesting that the use of consecutive calls is an

accurate proxy to measure human displacement at large enough scales (> 1 km).
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line).

IV. INTRINSIC REFERENCE FRAME FOR INDIVIDUAL TRAJECTORIES

A. Radius of gyration: The linear size occupied by each user’s trajectory up to timet is

characterized by its the radius of gyration defined as

ra
g (t) =

√

√

√

√

1

na
c (t)

na
c

∑

i=1

(~ra
i − ~ra

cm)2, (S2)

where~ra
i represents thei = 1, ..., na

c (t) positions recorded for usera and~ra
cm = 1/na

c(t)
∑na

c

i=1
~ra
i

is the center of mass of the trajectory.
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B. Moment of Inertia: To compare different users’ trajectories we need to study them in a

common reference frame. Inspired by the mechanics of rigid bodies [6], we assign each user to an

intrinsic reference frame calculated a posteriori from a user’s trajectory. We can think of the num-

ber times a user visited a given location as the mass associated with that particular position. We

denote a user’s trajectory with a set of locations{(x1, y1), (x2, y2), ...(xnc
, ync

)}, wherenc is the

number of positions available for the user. An object’s moment of inertia is given by the average

spread of an object’s mass from a given axis. A two dimensional object can be characterized by a

2 × 2 matrix known as thetensor of inertia

I =





Ixx Ixy

Iyx Iyy



 . (S3)

We can calculate the inertia tensor for user’s trajectoriesby using the standard physical formulas

Ixx ≡
nc

∑

i=1

y2
i (S4)

Iyy ≡
nc

∑

i=1

x2
i (S5)

Ixy = Iyx ≡ −

nc
∑

i=1

xiyi. (S6)

Since the tensorI is symmetric, it is possible to find a set of coordinates in whichI will be diag-

onal. These coordinates are known as the tensor’s principalaxes(ê1, ê2). In this set of coordinates

I takes the form

ID =





I1 0

0 I2



 , (S7)

whereI1 andI2 are the principal moments of inertia. They also correspond to the eigenvalues

of I and can be calculated from the original set of points as

I1 =
1

2
(Ixx + Iyy) −

1

2
µ (S8)

I2 =
1

2
(Ixx + Iyy) +

1

2
µ, (S9)

with

µ ≡
√

4 Ixy Iyx + Ixx
2 − 2 Ixx Iyy + Iyy

2 (S10)
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The corresponding eigenvectors determine the principal axes (̂e1 andê2), representing the symme-

try axes of a given trajectory.

C. Rotation of user trajectories: We transform each user’s principal axes(ê1, ê2) to a common

intrinsic reference frame(êx, êy) calculating the angle between the axesêx andê1, as

cos(θ) =
~v1.êx

|~v1|
(S11)

wherev1, is the eigenvector associated with the eigenvalueI1

~v1 =







− Ixy

1/2 Ixx−1/2 Iyy+1/2 µ

1






, (S12)

resulting in

cos(θ) = −Ixy (1/2 Ixx − 1/2 Iyy + 1/2 µ)−1 1
√

1 + Ixy
2

(1/2 Ixx−1/2 Iyy+1/2 µ)2

. (S13)

After rotation byθ, we impose a conditional rotation of180o such that the most frequent

position lays always inx > 0.

D. Example: Figure S3 shows the recorded trajectories of 3 users (u1, u2 andu3), each charac-

terized by a different radius of gyration:rg|u1 = 2.28 km, rg|u2 = 29.02 km, andrg|u3 = 313.72

km. Using (S4), (S5) and (S6), we calculated the different components of the tensor of iner-

tia. Equations (S12) and (S13) allow us to determine the intrinsic axes for each user (ê1, ê2),

which are displayed in Fig. S3a. Their respective angles are: θ|u1 = 127.67o, θ|u2 = 40.20o and

θ|u3 = 60.08o. Each set of points is rotated by−θ, such that(êx, êy) is the new intrinsic reference

frame of each user’s trajectory, as shown in Fig. S3b. The most frequent and the second most fre-

quent positions of each user are marked as a blue and orange circle respectively. After rotating the

trajectory of user 2, its most frequent position lays inx < 0, hence we apply an additional rotation

of 180o such that the most frequent position lays inx > 0. The purpose of this is to conserve the

asymmetry of the user’s visitation pattern. In the absence of the rotation the trajectories in Fig. S3a

and B (also Fig. 3 in the manuscript) will appear to be symmetric. Given, however, that there is a

significant difference in the most and the second most visited locations (see Fig. 2D in the paper),

we need to perform the symmetry breaking rotation to emphasize its presence. For example, we
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FIG. S3: Example of how to transform the user trajectories ina common reference frame.a, Initial trajec-

tories of three users and their principal axes(ê1, ê2). b, Each trajectory is rotated an angle−θ to align ê1

with êx. An additional rotation with180o is required when the most frequent position (marked with a blue

circle) lays inx < 0 after the rotation. This is the case of user 2 (green line).c, Positions(x, y) are scaled

as(x/σx, y/σy) after which the different trajectories have a quite similarshape.

found that for finite Lévy flights the rotation induced a slight but detectable anisotropy, capturing

the fact that each finite trajectory has some inherent anisotropy.

We scale the trajectories on the intrinsic axes with the standard deviation of the locations for

each usera

σa
x =

√

√

√

√

1

na
c

na
c

∑

i=1

(xa
i − xa

cm)2, (S14)

σa
y =

√

√

√

√

1

na
c

na
c

∑

i=1

(ya
i − ya

cm)2. (S15)

Note that the coordinate origin for each user is placed at thecenter of mass of the trajectory,

~ra
cm = (0, 0). In this example,σx|u1 = 2.24 km, σx|u2 = 28.76 km, andσx|u3 = 313.60 km

whereasσy|u1 = 0.43 km, σy|u2 = 3.88 km, andσy|u3 = 8.49 km. After scaling, the shapes

of the three trajectories look similar (S3c), despite that we are showing users with significantly

different mobility patterns and ranges. This is the underlying procedure that allows us to obtain
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the universal density functioñΦ(x/σx, y/σy).

E. Spatial density function: For agent based modeling it is crucial to know the probabil-

ity that an individual can be found at a position(x, y) during the day. As our results show,

knowledge of the spatial density functioñΦ(x/σx, y/σy) represent the first step towards such a

modeling effort. Indeed, using the density functionΦ̃(x/σx, y/σy) for an ensemble of agents

with rg’s following Eq.(3), each agent’s position can be rescaled using Eq.(4) and the fact that

σx = 0.94r0.97
g . The distribution of individuals in space can be arbitrary or more realistic if

taken from census information. The three matrixes shown in Fig. 3B can be downloaded from:

http://www.nd.edu/ mgonza16/DensityFunction/

V. SCALING RELATION BETWEEN EXPONENTS

Next we show that there is a consistent relationship among the different exponents describing

the travel patterns of the population. The exponentβ characterizing the distances traveled by the

entire population is related toα, which characterizes distances traveled by individuals and βr,

that captures the distribution of the radius of gyration. Wenote that (1) should be the result of a

convolution between (3) andP (∆r|rg), hence

P (∆r) =

∫

∞

0

P (∆r|rg)P (rg)drg, (S16)

using the expressions introduced in the manuscript this equation can be expanded as

P (∆r) =

∫

∞

0

r−α
g F (

∆r

rg
)(rg + r0

g)e
−rg/κdrg. (S17)

Focusing on the asymptotic scaling behavior we drop the short length cutoffr0
g and extract the

leading term by performing the substitutionrg = ∆rx. Finally the scaling is given by

P (∆r) ≈ ∆r−α−βr+1

∫

∞

0

x−αF (
1

x
)ex∆r/κdx, (S18)

indicating thatβ = α + βr − 1. Note, however, that the integral in (S18) also depends on∆r,

therefore the scaling relationship is valid only to the leading order and further corrections may

result from the integral. This correction cannot be evaluated in the absence of an analytical ap-

proximation forF (x). For our data we findβ = 1.75± 0.15, βr = 1.65± 0.15 andα = 1.2± 0.1,

indicating that the scaling relation, within error bars, issatisfied, and that there is a systematic

difference betweenβ andβr of magnitudeα − 1.
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VI. TIME DEPENDENCE OF THE RADIUS OF GYRATION
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FIG. S4: Time evolution of the radius of gyration〈rg(t)〉 vs. time, for various groups of users with different

asymptoticrg(T ) after T = 6 months. a, In a log-log scale the black lines correspond to the powers of

time for the random walk and Lévy flight models, which are in contrast with the time dependence of〈rg(t)〉

measured for the mobile phone users.b, In a log-linear scale, note that therg = 4 andrg = 10 visibly

deviate from the largerg curves. This is not surprising, as for these two curves the recorded distances are

comparable to the average tower distances (both curves appear to saturate under10 km, while the average

area of reception for a tower is about3 km2). Thus, small travel distances are overestimated due to the

measurement resolution. Curves withrg > 10 km are less affected by the tower resolution and all these

appear to collapse in the same behavior once rescaled withrg(T ), and they are all approximated with a

logarithmic time dependence. The straight line is not a fit, but it is shown only as a guide to the eye.

Figure 2A in the manuscript shows three groups of users chosen according to the asymptotic

rg(T ) after T = 6 months. In Fig. S4 we show that the same time dependence is observed for

a more strictly selected grouping of the users, choosing fivedifferent groups of users with very

similar asymptotic radius of gyration:rg(T )± 0.05rg(T ). Given the high daily and weekly-based
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fluctuations in the phone usage patterns, we averaged〈rg(t)〉 over168 different initial conditions,

i.e. we started the measurements at every6 hours during one week. This averaging not only

removed the dependence on the initial conditions, but also significantly reduced the noise in the

curves.

The log-log scale in Fig. S4a allows to see in detail the earlybehavior of the curves, indicating

that a power law does not offer a good fit to the data. As we show in the log-linear plot in

Fig. S4b, we find that the radius of gyration increases logarithmically in time, which is in strong

contrast with the power law dependence expected for Lévy flights (rg(t)|LF/TLF ∼ t3/(2+β)) and

random walks (rg(t)|RW ∼ t1/2). This indicates that the average radius of gyration of mobile

phone users has a manifestly slower dependence than the predicted power laws, a behavior that

may appear similar to a saturation process. Note that therg ∼ 4, 10 curves appear to deviate from

the logarithmic behavior. We belive that this is due to the spatial resolution offered by the tower

density: we cannot reliably and systematically resolve jumps in the vicinity of a few kms, given

that we record a motion only when a person moves between towers, that are often a few kilometers

apart. Therg > 10 km curves, given the distances involved, are not affected bythe granularity of

the data collection process, and they all follow the logarithmic behavior.

VII. STATISTICAL TESTS OF FITTING DISTRIBUTIONS

Given the fat tailed distributions observed for human travel patterns, it is important to see if

the data is statistically consistent with the best fits. The purpose of this section is to support our

findings with rigorous statistical tests. In the past year there has been significant attention devoted

to the question of how to statistically measure the goodnessof fit for a power law [7–10]. This

was prompted partly by the need to quantify the validity of the Lévy flight finding in animal travel

patterns. Note, however, that there is a significant difference between the data quality available in

the animal and human travel patterns. Indeed, the mammaliandata was available for short time

periods for only a few animals, providing only a small numberof observed individual displace-

ments. Given the scarcity of data, precise statistical tools are needed to extract the proper fit. In

contrast, the data analyzed in Ref. [11] as well as in this paper contain millions of displacements.

Thus we are in a regime where typically traditional statistical tools, designed to deal with limited

information, are less crucial. Yet, appropriate statistical tools can be used to explore the goodness
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of the fit.

In this respect, it is often believed that statistical methods can validate a particular fit. The

truth is, as emphasized in a recent publication [10], that these tools can only tell if a particular fit

is consistent with the data, and rule some fits out, rather than validate a particular fit. A second

important observation is that, given the high interest devoted to power laws, recently the issue of

fitting a power law has been addressed in detail, developing the proper statistical tools to address

the goodness of the fit [7–10]. The same tools are not available for truncated power laws, however,

thus limiting the available methods to address their statistical relevance. In general we find that all

the fits that we used in the paper pass the Kolmogorov-Smirnovtest for the goodness of fit (Sect.

V.A) and that a power law offers a much better approximation overall than an exponential function

(Sect. V.B). Note that given the vast amount of data and the really good fit offered by the truncated

power law, this last conclusion is hardly surprising.

A. Kolmogorov-Smirnov goodness of fit test

We tested whether the empirical data could come from the fitted distributions by performing a

stringent variant of the Kolmogorov-Smirnov (KS) goodness of fit test [10]. The KS statistics is

a simple way to compare whether two distributions are the same. In this case, we use it to test the

hypothesis:Could the empirically observed distributions come from thedistribution found as its

best fit. For this we generated synthetic data starting from the fitted distribution and then use the

KS test to see whether the empirical data we have behaves as well as the synthetic data generated

from the fitted distribution.

We use two variants of the KS statistics to compare empiricaldata with the fitted distribution

and synthetic data with the fitted distribution. The first method is the standard KS statistics and is

given by:

KS = max (|F − P |) (S19)

whereF is the cumulative distribution of the best fit andP is the cumulative distribution of the

empirical or synthetic data. The regularKS statistic is not very sensitive on the edges of the

cumulative distribution. Hence, we also used the weighted KS statistics defined as:
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KSW = max
|F − P |

√

P (1 − P )
(S20)

To test whether the empirical data behaves as good as the synthetic data we calculated theKS

andKSW statistics between the empirical data and its best fit and compared these values with

those obtained by calculatingKS andKSW for 1, 000 synthetic data sets generated from the best

fit. If the values obtained forKS andKSW for the empirical data behave as good or better than

those obtained for the synthetic data, then we can conclude that the empirical data is statistically

consistent with its best fit. The results of theKS test can be summarized using ap − value
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by integrating the distribution ofKS values generated with the synthetic data from the value

representing the empirical distribution. When integrating such distributions from left to right we

can interpret thep − value as the probability that the observed data was the result of its best fit.

A p − value close to 1 will indicate that the empirical distribution matches its best fit as good

as synthetic data generated from the fit itself [10], whereasa relative smallp − value (typically

takenp < 0.01) would suggest that the empirical distribution can not be the result of its best fit.

Passing theKS test does not rule out the possibility that the empirical data could be fitted as

well or even better with some other function. In such a case, given the size of our samples, we
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believe that such an exercise would be technical rather thanpractical and that different functional

forms will closely resemble each other on the range were the fit was made once the fitting

parameters have been fixed.

1. KS statistics for Fig 1C,D1: Figure S5 compares theKS values obtained for the empirical

data presented in Fig 1C,D1 of the paper with those obtained for1, 000 distributions of synthetic

data generated to comply with Eq. (1). Figure S6 shows the same forKSW . In both cases we find

that the empirical data passes theKS test, in fact behaving better than the synthetic data. Indeed

p(KS) = 1 andp(KSW ) = 1.

2. KS statistics for Fig 1D,D1: Figure S7 compares theKS values obtained for the empirical

data presented in Fig 1D,D1 of the paper with those obtained for 2000 distributions of synthetic

data generated to comply with Eq. (3). Figure S8 shows the same forKSW . In both cases we find

that the empirical data passes theKS test, behaving as some of the best examples of the synthetic

data, obtainingp(KS) = 0.62 andp(KSW ) = 0.82.

B. Maximum Likelihood Estimates: Comparing power-laws andexponentials

The Maximum Likelihood Method is a powerful way of estimating the fitting parameters best

describing a empirical distribution. The method can also beused to compare the relative likelihood

of two fits. In this section we are interested in testing whether a broad distribution, such as a

power-law, is a better fit than an exponential for many of the distributions presented on the paper.

It is not our intention to claim that the distributions presented here are in fact power-laws but

to build suggestive evidence testing if the data presented in the paper is better fitted by a broad

distribution, such as the power-law, rather than a narrow distribution such as an exponential. In

fact, as we discuss in the manuscript and the previous section, we believe that the best fit to our

data is given by a truncated power law rather than a simple power law. We do not present here

the maximum likehood estimate of the truncated power-law fitbecause being its cumulative a

Whittaker function, it is not readily to be handled with thismethod. For those interested in the

accuracy of the best fit we suggest reading section VII A of this supplementary material.
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The details of the maximum likelihood method have been widely published. Those interested

in performing such fits could find help in [10] and [7].
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Testing for broad and narrow distributions: The relative likelihood between two distribu-

tions can be calculated from its relative weights

Wi =
e−∆i

e−∆1 + e−∆2

, (S21)

where∆i = min (AICi − AICmin). HereAIC is the Akaike information criteria associated with

the power-law (i = 1) and exponential (i = 2) fits. TheAIC can be expressed as a function of the

log-likelihood [7]

AICi = 2 log max(Li) + 2Ki

whereKi is the number of parameters used in the fit andLi is the likehood of a particular value of

a fitting parameter.
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Here we test two fits, a power-lawAx−β and an exponentialAe−µx, whereA is a normalization

constant. In Fig. S9 we present the results of the Maximum Likelihood Fits for the distributions

introduced in Fig. 1C and Fig. 1D of the paper. Note, we use thedata log binned data, which

has been recommended as the most accurate plotting method for this kind of analysis [8]. In each

case we findWpow >> Wexp indicating that a power law is a more likely fit than an exponential,

indicating that the distribution of displacements, as wellasrg, are better approximated by a broad

rather than a narrow distribution.
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only mean that morale at places such as the Environmental Protec-
tion Agency will improve.

So far, McCain and Obama have set out relatively different plat-
forms on science and technology issues. For his part, Obama has 
yet to give a substantive speech on science issues, as 
Clinton did on the 50th anniversary of Sputnik. But 
he has adopted many of the traditional Democratic 
platforms, such as increasing federal funding for bio-
medical research and improving the jobs pipeline for 
young scientists. He has put a strong emphasis on the 
importance of technology for improving the lives of 
everyday Americans and their access to government. And he has been 
remarkably successful at using the Internet to turn his supporters into 
active participants in the political process. An Obama administra-
tion might well mean that more technologically savvy people will be 
drawn into public life — and perhaps that more young people will 
choose science and engineering careers. 

In contrast, McCain has revealed few details of his science and 

technology agenda. But in some areas he has been quite outspoken. 
Last week, for example, he called for a new treaty to reduce the US and 
Russian nuclear arsenals, suggesting he would lower the number of 
weapons even beyond the cuts planned by the Bush administration. 

And on 12 May he outlined a detailed plan for con-
trolling greenhouse-gas emissions — the centrepiece 
of which is a cap-and-trade system of the type he has 
been advocating since at least 2003, when he co-spon-
sored the first meaningful bill on that subject. 

In the end, the main factor is not how Obama or 
McCain feels about specific science-related issues. 

What American voters deserve to know is how each candidate’s 
mind works. Does he listen to a handful of ideology-driven advisers 
in making key decisions? Or does he look facts in the face and base 
his conclusions on all the available evidence? If it’s the latter, then 
that is the candidate who is in sync with science at a level far more 
meaningful than any immediate argument over research budgets or 
competitiveness.  ■

A flood of hard data
Social scientists have a new handle on group 
behaviour — but its causes remain a challenge. 

Every human being makes choices, takes action and is affected 
by the environment in a way that seems utterly idiosyncratic. 
Yet in the aggregate, as the British philosopher John Stuart 

Mill put it a century and a half ago, human events “most capricious 
and uncertain” can take on “a degree of regularity approaching to 
mathematical”. A case in point is the analysis of mobile-phone data 
discussed by González et al. on page 779 of this issue. It reveals just 
such a mathematical regularity in the seemingly unpredictable way 
people move around during their daily lives (see also page 714). 

As remarkable as this result is — and it is still 
not completely understood — the research is just 
as notable for its methodology. Social scientists 
have long struggled with a paucity of hard data 
about human activities; people’s self-reporting 
about their social interactions, say, or their move-
ment patterns is labour-intensive to collect and 
notoriously unreliable. In this case, the researchers 
obtained objective data on individuals’ movements 
from mobile-phone networks (albeit without access 
to any individual’s identity, for privacy reasons). This gave them a 
data set of proportions almost unheard of for such a complex aspect 
of behaviour: more than 16 million ‘hops’ for 100,000 people. The 
resulting statistics show a strikingly small scatter, giving grounds for 
confidence in the mathematical laws they disclose.

The mobile-phone technique is simply the latest example of 
how modern information technologies are giving social scientists 
the power to make measurements that are often as precise as 
those in the ‘hard’ sciences. By analysing e-mail transmissions, for 
example, or doing automated searches of publication databases, 

social scientists can collect detailed information on the network 
structure of scientific collaborations and other social interactions. 
And by allowing their subjects to interact online, researchers 
can do large-scale studies of, for example, the role of social inter-
actions in opinion formation, complete with control groups and 
tuneable parameters. 

It’s not an overstatement to say that these tools are fostering a 
whole new type of social science — with applications that go well 
beyond the conventional boundaries of the field. There is sure to be 
commercial interest in the detailed patterns of usage for portable 
electronics, for example, and the nature of mass human movement 
could inform urban planning and the development of transporta-
tion networks. Epidemiologists, meanwhile, will no longer be forced 
to work with highly oversimplified models of infection rates and 
disease spread: recent work has clarified how the transmission of 

disease depends on the precise structural details of 
the network of person-to-person contacts. 

For all their promise, making sense of these new 
data sets requires a rather different set of statisti-
cal skills than those needed in conventional social 
science — which may be one reason why studies 
such as that by González et al. are so often con-
ducted by researchers trained in the physical sci-
ences. To some extent this ‘physicalization’ of the 
social sciences is healthy for the field; it has already 

brought in many new ideas and perspectives. But it also needs to be 
regarded with some caution. 

As many social scientists have pointed out, the goal of their disci-
pline is not simply to understand how people behave in large groups, 
but to understand what motivates individuals to behave the way they 
do. The field cannot lose focus on that — even as it moves to exploit 
the power of these new technological tools, and the mathematical 
regularities they reveal. Comprehending capricious and uncertain 
human events at every level remains one of the most challenging 
questions in science. ■

“There can be little 
doubt that the next US 
administration will be 
more science-friendly 
than the current one.”

“The goal of social 
science is not simply to 
understand how people 
behave in large groups, 
but to understand what 
motivates individuals to 
behave the way they do.”
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F
ood is not, in general, spread equally 
around the world; it comes in lumps. 
Foragers thus need a strategy for find-
ing those lumps. One appealing option 

is a Lévy flight — a mathematical concept used 
in physics. Lévy flights are many-legged jour-
neys in which most of the legs are short, but a 
few are much longer. They are found in some 
sorts of diffusion, in fluid turbulence, even in 
astrophysics. In animal behaviour, the longer 
the flight, the farther afield a creature will get, 
offering a way to efficiently exploit food nearby 
but also to discover sources farther away. 

“The pattern captures what biologists often 

notice,” says behavioural ecologist David Sims 
of the Marine Biological Association Labora-
tory in Plymouth, UK. “Animals often take lots 
of short steps in a localized area before making 
long jumps to new areas.” 

But just because it makes qualitative sense 
doesn’t mean it is a mathematical key to the real 
world. Hard evidence is needed to show that 
the pattern is a real Lévy flight, in which the 
frequency of steps of given distances is firmly 
constrained. And this evidence is what physicist 
Gandhimohan Viswanathan, then a graduate 
student at Boston University in Massachusetts, 
and his colleagues seemed to find in 1996.

Albatrosses soar over tremendous distances 
as they circle the oceans, alighting here or there 
to feed on squid, fish or krill before heading 
off again. Observers had thought the foraging 
was random; but any hidden pattern would be 
evident only on the scale of seas and oceans. It 
was this large pattern that Viswanathan, now 
at the Federal University of Alagoas in Brazil, 
decided to look for, using electronic logging 
data gathered by field ecologists at the British 
Antarctic Survey (BAS) in Cambridge.

Viswanathan and his colleagues found a 
scale-free fractal-like pattern in the data1, just 
what a Lévy flight ought to produce. Three years 
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later, they seemed to be on the track of a new 
principle of ecology when they showed that 
this way of moving is, under some conditions, 
theoretically the best way for animals to find 
scarce prey2. They and other researchers soon 
reported the same pattern in the movements 
of everything from reindeer and bumblebees 
to soil amoebas and the habits of fishermen3. 
The phenomenon is attracting more and more 
interest, and it seems to apply to more than just 
foraging. Research in this week’s Nature shows 
that it applies to the movements of mobile-
phone users4 too (see page 779). 

Flights of fancy?
There’s just one problem. Although other exam-
ples stand up to scrutiny, the one that started 
the field off does not, at least for now. There’s a 
lesson in that. When modellers use data from 
the field, they have to be sure that the data really 
represent what they think they represent, and 
that they fit tightly to their model. The devil is 
in the detail, when sparse data can put almost 
all conclusions on shaky ground.

The case for Lévy flights by albatrosses 
ran into problems in 2004, when physicist 
Sergey Buldyrev, also of Boston Univer-
sity and one of Viswanathan’s co-authors 
on the original albatross paper, analysed 
new data on albatross movements. The 
Lévy pattern didn’t turn up. Revisiting 
the original data collected by the BAS 

researchers, Buldyrev discovered that the 
longest flights recorded, which were crucial to 
the distinctive fractal fingerprint, might have 
been artefacts of the recording technique. 

The original albatross data came from devices 
called immersion loggers attached to the birds’ 
legs. The devices recorded the proportion of 
time in each quarter-minute that the birds sat on 
the sea surface. From these data, the research-
ers could then infer flights as periods during 
which the birds remained dry. From five birds, 
the researchers had obtained a total of 363 flight 
times, which seemed to show the Lévy pattern.

But Buldyrev wondered whether the long-
est periods of dry-leggedness — which always 
seemed to be the first and last in a bout of 
movement — might in fact record the birds 
sitting on their nests. The data had not been 
saying what the team thought they were saying. 
Finding that the Lévy pattern vanished when 
these data points were omitted, Buldyrev and 
his colleagues wrote up a manuscript and sent 
a draft to ecologist Richard Phillips at the BAS. 
Phillips, working with ecological modeller 
Andrew Edwards, also at the BAS, confirmed 
that there was no support for Lévy flights. 
Later, when they discovered that some of the 
albatrosses also had location trackers fitted 
to them, the BAS team proved that the birds 

weren’t moving during the alleged long flights. 
“I was disappointed,” says Viswanathan, “but 
also curious, surprised and perplexed.”

The Lévy flight notion took another blow 
last October, when the Boston and Cambridge 
groups collaborated to publish a comprehen-
sive reanalysis of the original albatross data, 
including an analysis of a new data set and a 
reconsideration of earlier studies of deer and 
bumblebees5. They found that the deer and 
bumblebee data were also ambiguous — the 
deer data, for example, actually reflected time 
spent cropping and processing food at a par-
ticular feeding site, rather than 
time spent moving between 
sites. Using improved statisti-
cal techniques, the teams found 
that none of the data offered 
strong support for the Lévy 
flight pattern. The results, they 
say, “question the strength of the 
empirical evidence for biologi-
cal Lévy flights.” 

It looked like a simple tale 
of problematic data corrected. But later last 
year, Sims and his colleagues presented strong 
evidence for Lévy-like patterns in the forag-
ing of numerous marine predators, including 
sharks, turtles and penguins6. They used what 
all researchers agree are more sophisticated 
statistical methods, and much larger data sets. 
Sims and others now suggest that the data 
really do point to Lévy flights for a variety of 
animals, including humans. 

Not everyone yet agrees with this position. 
But they do agree that the episode illustrates 
the difficulties inherent in identifying statisti-
cal patterns with limited data. The difference 
between a Lévy flight and a more familiar form 
of random walk, brownian motion, is the distri-
bution of steps of different lengths. In brownian 

motion, as seen in the jittering of a pollen grain 
buffeted on all sides by invisible molecules, the 
distribution of distances follows a bell-shaped 
curve, so the size of the next step is at least 
crudely predictable — it is never 10 or 100 times 
bigger than the average, for example.

Doing the Lévy walk
A Lévy flight is a similar sort of random walk 
— but the distribution of distances is differ-
ent. For example, the probability of large steps 
of size D might fall off in proportion to dγ, 
with γ being a number somewhere between 

1 and 3. This distribution, in 
what is known as a power law, 
gives more frequent long steps 
than a bell curve, and produces 
a pattern characterized by lots of 
smaller movements broken epi-
sodically by long excursions. 

Diagnosing a true Lévy flight 
means showing that the power-
law distribution holds. There is 
a simple statistical approach to 

this. First ‘bin the data’: that is, count up the 
events that fall within each small range of dis-
tances to get a measure of the way the prob-
ability of differing distances is distributed. If a 
power law holds, the relationship between the 
logarithm of this probability distribution and 
the logarithm of the distance will be linear. 
Hence, if the log of the first is charted against 
the log of the second, you’ll get a straight line. 

As Edwards points out, however, this tech-
nique can lead to trouble. “It’s well known that 
log–log axes tend to make relationships look 
straight.” The problem is at its worst when data 
are in short supply. A more rigorous approach, 
he says, is to decide mathematically which of 
two possible distributions, say a power law or 
an exponential, the data fit better. But such 
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“It was wrong, yet 
it turned out to be 
fruitful because it 
led to other ideas 
that we now think 
are correct.”
 — Eugene Stanley

Dry of foot, but not flying.
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determinations need a lot of data.
Sims agrees. Inspired by the original alba-

tross paper, he and his colleagues used satellite-
linked tags to gather data on plankton-feeding 
basking sharks. They found horizontal tracks 
reminiscent of Lévy-like movements, but never 
obtained enough data to permit a sound statis-
tical analysis. “A lack of data,” he says, “means 
you can fail to detect the pattern even if it’s 
there, or detect an apparently similar pattern 
even if it is not.”

Two years ago, Sims hit on the idea to look at 
sharks’ vertical movements instead. These were 
recorded at 1-minute intervals for months on 
end, providing more than 400,000 data points 
for analysis. Using statistical methods developed 
in part by Mark Newman of the University of 
Michigan, Ann Arbor, and similar to those used 
by Edwards and his team, they found a strong 
signal of Lévy behaviour. Sims then organized a 
collaboration of 18 researchers from four coun-
tries to gather and test similar data for other 
marine predators, finding the Lévy pattern for 
tuna, cod, leatherback turtles and penguins6 . 

Sims says that his paper “represents some of 
the strongest evidence for Lévy-like behaviour 
in wild predators”. “The debate has shifted,” says 
Frederic Bartumeus of Princeton University in 
New Jersey, who in 2003 found Lévy patterns 
in the movements of plankton. “The question 
now isn’t whether animals perform Lévy walks, 
but when they do — and why.”

Although welcoming the use of larger data 
sets, Edwards, now at the Pacific Biological Sta-
tion in Nanaimo, British Columbia, Canada, 
doesn’t think that these studies end the debate. 
He says that some scientists have started to 
use the somewhat softer phrase ‘Lévy-like’ to 
describe their results, which may make their 
claims more defensible, but also introduces 
some vagueness into the discussion. “How ‘non-
Lévy-like’ do the data have to be for them not to 
be considered ‘Lévy-like’ any more?” he says.

The matter is not mere pedantry: getting 
the pattern right should help researchers 
to answer meaningful biological questions 

— which organisms, if 
any, forage optimally, 
and why. Yet for Sims, 
the qualifier ‘like’ is not 
without its uses. It could 
be useful in probing the 
complex, interacting fac-
tors that affect movement 
patterns. “Animals often 
undertake other behaviours 
interspersed with searching, 
such as social interactions or 
predator avoidance,” he says, 

which may weaken the Lévy signal. 

Man in the mirror
However the debate plays out, analyses of data 
from one particular animal, humans, are likely 
to be increasingly important. Over the past dec-
ade, technology has transformed researchers’ 
ability to gather quantitative data on human 
activities, ranging from patterns of e-mail use 
to consumers’ buying habits. People happily 
carry radio trackers and tags around in the form 
of mobile phones. “We finally have objective 
measurements of what people do,” says Albert-
László Barabási, a researcher studying human 
dynamics in this way at the Center for Com-
plex Network Research, based at Northeastern 
University in Boston. “Our observations don’t 
influence them.”

This work can be viewed, perhaps, as the 
beginnings of a natural ecol-
ogy of human behaviour, for 
which understanding patterns 
of physical movement — the 
crude equivalent of animal for-
aging — would offer an obvious 
first goal. Two years ago, phys-
icist Dirk Brockmann of the 
Max Planck Institute in Göttin-
gen, Germany, took an indirect 
stab at the issue using the website www.wheres-
george.com, which facilitates the tracking of 
dollar notes moving through the United States. 
People can go to the site and enter the date, 
their location and the serial numbers of dollar 
bills in their possession. As the bills move, the 
site shows their changing locations. 

Almost 60% of bills starting in New York City 
were reported 2 weeks later still within 10 kilo-
metres of their starting point. But another 7% 
had jumped to distances beyond 800 kilome-
tres. If this seems similar to the Lévy pattern, it 
is. The researchers found that the distribution 
of distances travelled over a short time follows a 
power law with a γ equal to about 1.6 (ref. 7).

These data don’t directly say anything about 
the human movements that transport dol-
lar bills. But a team led by Barabási has now 
gone one step further, using anonymized 

mobile-phone data to track the movements 
of more than 100,000 people over a 6-month 
period. The statistics, they found, again show 
the Lévy pattern, although with some additional 
complexity4 .

The team found, overall, that the distribu-
tion of the distance moved between two sub-
sequent phone calls follows a power law with 
an exponential cut-off. The best way to explain 
this pattern, the researchers argue, is through a 
combination of two effects — first, a real ten-
dency for individuals to move in a Lévy-like 
pattern, with many short movements and less 
frequent long excursions, but also a difference 
between people in the overall scale on which 
they move, with some people being inher-
ently longer travellers than others. When the 
researchers normalized the measurements so 
that the person-to-person scale factor no longer 
played a part, the data for all the participants fell 
onto a single curve. “There are a lot of details 
that make us different,” says Barabási, “but 
behind it all there’s a universal pattern.”

And what of the albatrosses? Are they an odd-
ity — an error that nevertheless served as the 
basis for insights into truth? Perhaps. “I think of 
it like the Bohr model of the atom,” says Eugene 
Stanley, a physicist from Boston University who 
was one of the original authors. “It was wrong, 
yet it turned out to be fruitful. The remarkable 
fact is that flawed data led to a fascinating idea: a 
general law governing animal movement.”

Or perhaps albatrosses do 
roam the high seas in the way 
that Lévy might have antici-
pated, and we will know that in 
time with better data and anal-
yses. As Viswanathan points 
out, he and his colleagues’ 1999 
paper showing the theoretical 
optimality of Lévy-style forag-
ing provides a good a priori 

reason to expect that some animals, and quite 
possibly albatrosses, might exploit this trick. 

“Given the power of natural selection,” says 
Viswanathan, “it seems unlikely to me that 
Lévy walks wouldn’t exist somewhere in ani-
mal biology. It would be as strange as if vision 
had never evolved.”  ■

Mark Buchanan is author of The Social Atom.

1. Viswanathan, G. M. et al. Nature 381, 413–415 (1996).
2. Viswanathan, G. M. et al. Nature 401, 911–914 (1999).
3. Viswanathan, G. M., Raposob, E. P. & da Luzdoi, 

M. G. E. Phys. Life Rev. (in the press) doi:10.1016/
j.plrev.2008.03.002

4. González, M. C., Hidalgo, C. A. & Barabási, A.-L. Nature 
453, 779–782 (2008).

5. Edwards, A. M. et al. Nature 449, 1044–1048 (2007).
6. Sims, D. W. et al. Nature 451, 1098–1102 (2008).
7. Brockmann, D., Hufnagel, L. & Geisel, T. Nature 439, 

462–465 (2006).  

See Editorial, page 698, and News Feature, 
page 717.

C
. A

. H
ID

A
LG

O
 &

 M
. C

. G
O

N
Z

A
LE

Z

Mobile phone records reveal peoples’ movements.

“It’s well known that 
log–log axes tend to 
make relationships 
look straight.” 
 — Andrew Edwards
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